顯示具有 生地化循環 標籤的文章。 顯示所有文章
顯示具有 生地化循環 標籤的文章。 顯示所有文章

2025年3月18日 星期二

因為火山才有我們呼吸的氧氣?

 原文網址:https://www.u-tokyo.ac.jp/focus/en/press/z0508_00396.html

一般認為自25億年前開始,能行光合作用的微生物以相對較快的速度增加之後,地球的大氣就一直含有豐富的氧氣。而某些前導事件,又稱為「短暫氧化事件」(whiff)可能為豐富氧氣的產生打開了門路。東京大學的研究人員參與在內的團隊提出了一種機制來解釋這些事件,他們的發現提出火山活動改變環境條件的程度足以使氧化加速,而短暫氧化事件就是此過程的體現。

數十億年前的生地化循環。地質上的不同腳色,包括火山、地表之下的地函、海洋與大氣之間的複雜交互作用網絡,形成了早期生命要讓大氣氧化所需的化學混和物。圖片來源:東京大學


2022年3月14日 星期一

地函深處有生命的痕跡

 原文網址:https://ethz.ch/en/news-and-events/eth-news/news/2022/03/traces-of-life-in-the-earths-deep-mantle.html

By Felix Würsten

動物在54000萬年前的迅速發展永久改變了地球,甚至達到下部地函。由蘇黎世聯邦理工學院的研究員Andrea Giuliani主持的團隊,發現地函深處的岩石具有那次生物的迅速發展留下的痕跡。

金柏利岩是一種成分複雜的岩石,它們是從非常深的地方來到地球表面。圖中是一片富含碳酸鹽的金柏利岩薄片。圖片來源:David Swart / Messengers of the Mantle Exhibition

2021年4月29日 星期四

新研究顯示微生物可以封存大量的碳

 原文網址:https://news.utk.edu/2021/04/26/new-study-shows-microbes-trap-massive-amounts-of-carbon/

強烈的板塊碰撞與劇烈的火山爆發正常來說並不會讓我們聯想到適合生命居住的條件。但是田納西大學諾克斯維爾分校的微生物學副教授Karen Lloyd參與的新研究,卻揭曉了在地球深處有一個巨大的微生物系統,它們運作所需的化學物質正是在這些板塊運動造成的劇變中產生。

圖片來源:田納西大學諾克斯維爾分校

2019年12月18日 星期三

關於地球氧氣的爭論有了新的看法


原文網址:http://www.leeds.ac.uk/news/article/4513/breathing_new_life_into_earths_oxygen_debate
關於地球氧氣的爭論有了新的看法
新的研究極力主張導致地球空氣可供呼吸的大型「氧化事件」可以自發性發生,而非生物或者板塊運動有所變革的結果。

2019年5月3日 星期五

發現「改變世界的碰撞」產生的另一道餘波


發現改變世界的碰撞」產生的另一道餘波
Liz Fuller-Wright
五千萬年前,現為印度次大陸的陸塊撞上了亞洲,改變了陸地的分布模式,也對地形、全球氣候等方面造成了諸多影響。美國普林斯頓大學的科學家團隊最近發現了這起事件的另一道效應:全球海洋氧氣增加,進而改變了生物的生存環境。
陸地與海洋的樣貌都會隨時間改變。現在的印度次大陸曾是一個陸塊,之後它往北用力撞上亞洲,造成特提斯洋關閉並擠出喜馬拉雅山,史稱「改變世界的碰撞」。這兩張古地圖顯示了發生前()與發生期間()的海陸分佈。當時全球海平面比現今還高,使得大部分的非洲北部以及各大陸的部分地區被高鹽度的淺海(淺藍色區塊)覆蓋。最近普林斯頓大學的研究團隊利用從三個地點(星號標記)採來的樣品,首度建立出7000萬年前至3000萬年前海洋氮和氧的濃度變化,結果顯示印度和亞洲碰撞之後海洋化學發生了重大變化。另一次變化則發生在3500萬年前,南極洲的冰層開始變厚,造成全球海平面下降的時候。圖片由普林斯頓大學的Emma Kast製作,古地理的重建結果經Deep Time Maps授權。

2017年5月16日 星期二

侏儸紀的海洋氧含量下降事件持續了100萬年之久

原文網址:www.sciencedaily.com/releases/2017/05/170512081327.htm
侏儸紀的海洋氧含量下降事件持續了100萬年之久
海洋氧氣的劇烈下降造成了海洋生物的大滅絕,雖然最終自然落幕了,但卻耗費了將近百萬年的時間。

2016年10月23日 星期日

沒有甲烷的世界:早期地球如何保持溫暖?

原文網址:www.sciencedaily.com/releases/2016/10/161007090659.htm

沒有甲烷的世界:早期地球如何保持溫暖?
在至少10億年前的遙遠過去,地球應當整個冰封但實際上卻並未發生。科學家認為他們曉得箇中原由,但NASA天體生物學研究所的替代地球小組進行的新模擬研究,卻罷除了這段久為接受情節中的主角位置。

雖然人類十分擔憂溫室氣體,但對18億至8億年前生活在海洋的微小生物來說,它們卻是不可或缺的。當時太陽比現今還要黯淡了百分之1015,它傳遞的能量太過微弱使得單靠太陽並無法讓地球保持溫暖。因此地球勢必需要由可以困住熱量的氣體來混合成某種有效配方,讓海洋維持液態並使生命得以存活。

數十年以來,大氣科學家將甲烷推派為主要角色。他們的想法主要是認為在地球最初35億年,起初氧氣不存在而後續含量也微不足道的情況下,保溫能力是二氧化碳34倍的甲烷在這段期間多數時候應該具有絕對主導地位。(今日我們呼吸的空氣中氧氣佔了五分之一,這會使得甲烷在幾年內就被破壞殆盡。)

「從海洋生地化循環的角度可以合理解讀出甲烷有比氧氣還要危險的敵人。」此篇刊登於926日《美國國家科學院院刊》(Proceedings of the National Academy of Sciences)的論文第一作者,加州大學河濱分校的研究生Stephanie Olson說。她也是「替代地球」團隊的成員之一。「當海洋有硫酸鹽時,你不可能從中得到大量甲烷。」

直到大氣出現氧氣並引發陸上氧化造成的岩石風化作用之後,硫酸鹽才不太造成影響。黃鐵礦之類的礦物被分解時會產生硫酸鹽,隨後會跟著河水流向大海。 Olson表示雖然氧氣較少代表海洋硫酸鹽含量也較低,但只要濃度有現在海洋的1%,就足以將甲烷消滅殆盡。

Olson和她「替代地球」團隊的另外兩位共同作者,喬治亞理工學院地球和大氣科學助理教授 Chris Reinhard,以及加州大學河濱分校生物化學特聘教授Timothy Lyons的主張中,他們推測10億年前海洋硫酸鹽將大氣甲烷濃度限制在110 ppm(百萬分之一),這跟先前某些模型呈現出大氣含有高達300 ppm的甲烷相比微小許多。

Olson說過往氣候模型以及它們估計出的大氣成分會有嚴重缺陷,是因為甲烷大部分來自於海洋特定種類細菌分解有機物質而產生,但這些模型卻忽略了海洋中發生的作用。

海洋硫酸鹽會以兩種方式對甲烷造成麻煩:首先硫酸鹽會直接摧毀甲烷,而限制甲烷從海洋逸散出來和累積在大氣中的量。另一方面硫酸鹽會減少甲烷產量,生物從還原硫酸鹽得到的能量多於製造甲烷時得到的,因此近乎所有海洋環境中的細菌都會優先消耗硫酸鹽而非製造甲烷。

此篇研究中的數值模型計算了從18億至8億年前這10億年間,海洋中硫酸鹽還原、甲烷產量以及其他各種生地化循環如何作用。這是目前為止運用在早期地球的模型中解析度最高者,它將海洋分成15000塊三維區域並分別計算各個地區發生的循環作用。相較而言,其他生地化模型是將全球海洋分割成二維網格且最多不超過5格。

確實還沒有其他模型可以與之相提並論。另一篇刊登於美國國家科學院院刊的相關研究第一作者Reinhard說。這篇論文從顯示硫酸鹽與甲烷之間存有致命關係的同一份模擬結果中,來敘述當時氧氣經歷了何種命運。

Reinhard依據替代地球小組近日發表於期刊科學( Science)地質( Geology)所顯示的獨立證據,注意到氧氣給予了甲烷另一次打擊。依據這兩篇論文的論述,直到氧氣於8億年前含量急遽攀升之前,較早岩石紀錄中的地化訊號顯示大氣含氧量非常低落,可能遠少於現今濃度的百分之一。

既然這兩種氣體彼此之間無法共處,較少氧氣對甲烷來說似乎是項好消息。然而當氧氣濃度降到如此稀薄,會產生另一項問題。

臭氧層可以保護甲烷免受光化學反應破壞。要產生這道保護層,大氣中必需有自由氧分子存在,Reinhard表示。當研究人員以預估的低氧濃度來運行模擬,在過程中從未有臭氧層產生,導致勉強從海洋散出的一絲甲烷還是難逃被光化學作用破壞的命運。

Lyons表示在缺乏甲烷的情況下,科學家會面臨新的嚴峻挑戰來確立溫室氣體大雜燴是如何調製,以解釋地球氣候和生命的眾多情節為何發生,包含長達10億年間地球無冰河形成的原因。了解其他暖化氣體,像是水氣、氮氧化物以及二氧化碳的確切組成,也可以幫助我們估計銀河系中其他與地球類似的數千億顆行星的適居程度。

若我們在一顆系外行星上偵測到甲烷,由於其為一種生命跡象(biosignature)因此這顆行星會成為我們尋找生命的最佳候選對象之一。另外,在尋找火星生命的許多討論中也以甲烷為主軸。 Lyons說,然而,若外星文明在十億年前觀察我們的星球時,他們幾乎無法偵測到甲烷--儘管地球大部分歷史中很可能都有生物在不斷地產生甲烷。

Methane muted: How did early Earth stay warm?

For at least a billion years of the distant past, planet Earth should have been frozen over but wasn't. Scientists thought they knew why, but a new modeling study from the Alternative Earths team of the NASA Astrobiology Institute has fired the lead actor in that long-accepted scenario.
Humans worry about greenhouse gases, but between 1.8 billion and 800 million years ago, microscopic ocean dwellers really needed them. The sun was 10 to 15 percent dimmer than it is today -- too weak to warm the planet on its own. Earth required a potent mix of heat-trapping gases to keep the oceans liquid and livable.
For decades, atmospheric scientists cast methane in the leading role. The thinking was that methane, with 34 times the heat-trapping capacity of carbon dioxide, could have reigned supreme for most of the first 3.5 billion years of Earth history, when oxygen was absent initially and little more than a whiff later on. (Nowadays oxygen is one-fifth of the air we breathe, and it destroys methane in a matter of years.)
"A proper accounting of biogeochemical cycles in the oceans reveals that methane has a much more powerful foe than oxygen," said Stephanie Olson, a graduate student at the University of California, Riverside, a member of the Alternative Earths team and lead author of the new study published September 26 in the Proceedings of the National Academy of Sciences. "You can't get significant methane out of the ocean once there is sulfate."
Sulfate wasn't a factor until oxygen appeared in the atmosphere and triggered oxidative weathering of rocks on land. The breakdown of minerals such as pyrite produces sulfate, which then flows down rivers to the oceans. Less oxygen means less sulfate, but even 1 percent of the modern abundance is sufficient to kill methane, Olson said.
Olson and her Alternative Earths coauthors, Chris Reinhard, an assistant professor of earth and atmospheric sciences at Georgia Tech University, and Timothy Lyons, a distinguished professor of biogeochemistry at UC Riverside, assert that during the billion years they assessed, sulfate in the ocean limited atmospheric methane to only 1 to 10 parts per million -- a tiny fraction of the copious 300 parts per million touted by some previous models.
The fatal flaw of those past climate models and their predictions for atmospheric , Olson said, is that they ignore what happens in the oceans, where most methane originates as specialized bacteria decompose organic matter.
Seawater sulfate is a problem for methane in two ways: Sulfate destroys methane directly, which limits how much of the gas can escape the oceans and accumulate in the atmosphere. Sulfate also limits the production of methane. Life can extract more energy by reducing sulfate than it can by making methane, so sulfate consumption dominates over methane production in nearly all marine environments.
The numerical model used in this study calculated sulfate reduction, methane production, and a broad array of other biogeochemical cycles in the ocean for the billion years between 1.8 billion and 800 million years ago. This model, which divides the ocean into nearly 15,000 three-dimensional regions and calculates the cycles for each region, is by far the highest resolution model ever applied to the ancient Earth. By comparison, other biogeochemical models divide the entire ocean into a two-dimensional grid of no more than five regions.
"There really aren't any comparable models," says Reinhard, who was lead author on a related paper in Proceedings of the National Academy of Sciences that described the fate of oxygen during the same model runs that revealed sulfate's deadly relationship with methane.
Reinhard notes that oxygen dealt methane an additional blow, based on independent evidence published recently by the Alternative Earths team in the journals Science and Geology. These papers describe geochemical signatures in the rock record that track extremely low oxygen levels in the atmosphere, perhaps much less than 1 percent of modern values, up until about 800 million years ago, when they spiked dramatically.
Less oxygen seems like a good thing for methane, since they are incompatible gases, but with oxygen at such extremely low levels, another problem arises.
"Free oxygen [O2] in the atmosphere is required to form a protective layer of ozone [O3], which can shield methane from photochemical destruction," Reinhard said. When the researchers ran their model with the lower oxygen estimates, the ozone shield never formed, leaving the modest puffs of methane that escaped the oceans at the mercy of destructive photochemistry.
With methane demoted, scientists face a serious new challenge to determine the greenhouse cocktail that explains our planet's climate and life story, including a billion years devoid of glaciers, Lyons said. Knowing the right combination other warming agents, such as water vapor, nitrous oxide, and carbon dioxide, will also help us assess habitability of the hundreds of billions of other Earth-like planets estimated to reside in our galaxy.
"If we detect methane on an exoplanet, it is one of our best candidates as a biosignature, and methane dominates many conversations in the search for life on Mars," Lyons said. "Yet methane almost certainly would not have been detected by an alien civilization looking at our planet a billion years ago -- despite the likelihood of its biological production over most of Earth history."
原始論文:Stephanie L. Olson, Christopher T. Reinhard, Timothy W. Lyons. Limited role for methane in the mid-Proterozoic greenhouseProceedings of the National Academy of Sciences, 2016; 201608549 DOI: 10.1073/pnas.1608549113
引用自:University of California - Riverside. "Methane muted: How did early Earth stay warm?." ScienceDaily. ScienceDaily, 7 October 2016. 



2016年10月8日 星期六

從陸地侵蝕而來的物質使古代海洋中的生命得以生存

原文網址:www.sciencedaily.com/releases/2016/09/160926221617.htm

從陸地侵蝕而來的物質使古代海洋中的生命得以生存

隨著科學家陸續找到30億年前海洋已經有生命存在的證據,這些遠古化石卻也造成了一種矛盾。包括於如此早期的海洋中生活的單細胞細菌在內,生物都需要穩定供給磷才能生存,但是「除非有從陸地上侵蝕而來的磷,否則很難說明它們的來源。」威斯康辛大學麥迪遜分校地質科學系的Aaron Satkoski表示。「因此要解釋我們在如此久遠的時代中找到的化石是相當困難的。」
Satkoski是對此遙遠年代的海洋化學進行研究的第一作者。他說地質科學界一般預期當時的地球是顆海洋行星,僅有少數陸地矗立於海浪之上,甚至根本就沒有。「回到1960年代,這時人們基於諸多因素而宣稱當時地球幾乎沒有任何陸地,因此風化作用不足以影響海洋化學。然而,並沒有多少顯示30億年前情況如何的實際數據來支持上述說法。」
Satkoski說發現超過30億年前由細菌遺骸形成的化石改變了這番情節。「但如果當時海洋中已有生命存在,就得發生某種程度的陸地風化作用,才能供應支持生物存活所需的磷。」
當今海洋化學成分的主要影響因子為來自熱泉的流體(循環至地殼而產生的熱水),以及地表風化作用(從陸地侵蝕下來的物質經由河水運輸至海洋)
為了估計32.6億年前兩種因素個別影響多少,地球化學教授Clark JohnsonSatkoski從南非採集形成於當時的樣品,並且比較兩種不同形式的重晶石礦物中同位素的差異。其中膠結在一起的顆粒是在水中分別形成,之後沉澱至海床時才彼此黏合。
而立方體或者片狀的重晶石則是直接於海床形成。JohnsonSatkoski及其同僚Brian Beard推測顆粒狀重晶石反映了海水化學成分,因此也可看出是否有任何從陸地侵蝕而來的物質。另一方面,片狀重晶石則代表了海水化學跟熱泉流體混和後的結果。這篇研究的關鍵為精確測量兩種重晶石的同位素組成。所謂同位素是指化學性質相同但質量不同的原子。
著極其微小但仍相當顯著的差異,意味結果顯示它們的同位素比例之間有著粒狀重晶石確實是由陸地侵蝕而來的物質生成。也就是說,32.6億年前就已經有一定程度的侵蝕作用發生了。
這項甫發表於《地球和行星科學通訊》(Earth and Planetary Science Letters)的論文將確實有大規模陸地侵蝕作用發生的時間點提前了4億年。
「雖然對於當時地球表面有多少比例是陸地不過是猜測,但我們認為可能有高達今日陸地面積的三分之二。」Johnson表示。他是威斯康辛大學NASA天體生物學研究所的負責人。「過往有些研究估計當時完全沒有一塊陸地存在。」
「科學家在思考海洋化學時總是會把焦點放在熱泉流體上,但卻很少有數據可以用來研究它的影響,」Johnson說。「我們正嘗試將某些數據納入整個過程當中。」

這些關於陸地的研究跟來自火成岩的證據一致。從高熱融化狀態岩石中得到的證據指出,那段時期地表已經足夠堅硬而足以支撐山脈形成,使得侵蝕作用可以發生。「既然我們對當時情況擁有更趨完整的理解,整個故事也會更加完備。」Satkoski說。

這項結果也跟氣候方面的數據互相吻合,因為大氣中二氧化碳濃度上升會導致陸地風化作用更加強烈。Satkoski說雖然太陽當時相對來說溫度較低,但海洋卻未凍結。「這代表當時大氣中有更多溫室氣體。因為二氧化碳會形成碳酸並產生酸雨而加速化學風化,造成當時氣候較溫暖且風化作用更為劇烈。」

大陸出現也代表在如此遙遠的年代就已經開始有大範圍板塊構造運動緩緩發生。「普遍認為當時形成陸地的板塊構造運動尚未發生,使得地球上沒有多少陸地。」Satkoski表示,「我們呈現的證據卻持有相反意見。」Johnson說總括而言,他們的成果將各方面的證據充分統整起來。「我們正慢慢得出一個理論可以同時解釋生命源起、海洋營養源來自何方以及地球為何並未結凍。雖然這些現象彼此之間狀似互相切合,但僅僅20年前我們對早期地球的理解卻跟此天差地遠。」

Life in ancient oceans enabled by erosion from land
As scientists continue finding evidence for life in the ocean more than 3 billion years ago, those ancient fossils pose a paradox. Organisms, including the single-celled bacteria living in the ocean at that early date, need a steady supply of phosphorus, but "it's very hard to account for this phosphorus unless it is eroding from the continents," says Aaron Satkoski, a scientist in the geoscience department at the University of Wisconsin-Madison. "So that makes it really hard to explain the fossils we see at this early era."
Satkoski, who is first author of a new report on ocean chemistry from this remote period, says the conventional wisdom of geology has envisioned an oceanic planet, with little or no land above the waves. "Starting back in the 1960s, for various reasons people claimed there was very little continental mass, and so there wasn't enough weathering to affect the chemistry of the ocean. But there wasn't much real data from more than 3 billion years ago to support that."
Discoveries of fossil remains of bacteria from over 3 billion years ago have changed that picture, says Satkoski. "But if there was life in the ocean, you need some amount of continental weathering taking place to deliver phosphorus so the organisms can live."
The major influences on ocean chemistry today are hydrothermal flow (hot water that has circulated through the crust) and surface weathering (the river transport of material eroded from land into the ocean).
To evaluate each influence 3.26 billion years ago, geoscience Professor Clark Johnson and Satkoski collected samples from South Africa and compared isotopes in two forms of a rock called barite. The cemented granules had formed in the water, then fused after dropping to the ocean floor.
A solid, or bladed, type of barite had formed at the ocean floor. Johnson, Satkoski and colleague Brian Beard assumed that the granular rock would reflect ocean water chemistry, and therefore any eroded, continental material. The bladed barite would represent a mix of ocean chemistry and hydrothermal flow. The study hinged on precise measurements of isotopes -- atoms that are chemically identical but that have different masses.
The result was a nearly infinitesimal -- but still significant -- difference in the isotope ratios, signifying that the granular barite indeed was derived from sediment eroded from land. In other words, a significant amount of erosion was taking place 3.26 billion years ago.
Their report, just published online by Earth and Planetary Science Letters, pushes back the first solid date for large-scale continental erosion by 400 million years.
"It's a guess how much of the planet's surface was land, but it could be as high as two-thirds of the area of today's continents," says Johnson, who leads the NASA Astrobiology Institute at the University of Wisconsin. "Some previous estimates had no continents at all."
"When people were thinking about ocean chemistry, it was always centered on hydrothermal flow, but there was little data," Johnson says. "We are trying to put some data into the equation."
The finding about continents jibes with evidence from igneous rocks -- those sourced in hot, molten rock -- which indicated that the surface became rigid enough to support mountain belts, which would have eroded, during this period. "Now that we have a more complete picture, the story becomes more coherent," Satkoski says.
The result also meshes with climate data, as intense continental weathering could result from an increase in carbon dioxide in the atmosphere. Although the sun was relatively cold at that time, the oceans were not frozen, Satkoski says. "That suggests there was more greenhouse gas in the atmosphere, which would produce a warmer climate combined with increased weathering, because carbon dioxide creates carbonic acid and acid rain, which speeds chemical weathering."
The presence of continents also indicates that the broad, slow movements of plate tectonics had started at this distant time. "Conventional wisdom says Earth had few continents because it did not have plate tectonics, which is how continents are made," Satkoski says. "Our evidence says the opposite." Overall, the result provides a satisfying unification of diverse streams of evidence, Johnson says. "We are moving toward an explanation for the presence of life, and the nutrients in the ocean, and why Earth was not frozen. They seem to fit together, but this is a very different picture of the early Earth than we had just 20 years ago.
原始論文:Aaron M. Satkoski, Donald R. Lowe, Brian L. Beard, Max L. Coleman, Clark M. Johnson. A high continental weathering flux into Paleoarchean seawater revealed by strontium isotope analysis of 3.26 Ga bariteEarth and Planetary Science Letters, 2016; 454: 28 DOI:10.1016/j.epsl.2016.08.032
引用自:University of Wisconsin-Madison. "Life in ancient oceans enabled by erosion from land." ScienceDaily. ScienceDaily, 26 September 2016. 


2016年8月19日 星期五

不起眼的苔蘚卻幫助地球形成了富含氧氣的大氣層

原始網址:www.sciencedaily.com/releases/2016/08/160815185610.htm

Humble moss helped create our oxygen-rich atmosphere

不起眼的苔蘚卻幫助地球形成了富含氧氣的大氣層

The evolution of the first land plants including mosses may explain a long-standing mystery of how Earth's atmosphere became enriched with oxygen, according to an international study led by the University of Exeter.
根據一則由英國艾希特大學進行的國際研究,包含蘚苔在內的植物成功演化出在陸地上生活的能力,或許能解釋一項長久以來的疑問:地球大氣如何變得富含氧氣?
Oxygen in its current form first appeared in Earth's atmosphere some 2.4 billion years ago, in an incident known as the Great Oxidation Event. However, it was not until roughly 400 million years ago that this vital compound first approached modern levels in the atmosphere. This shift steered the trajectory of life on Earth and researchers have long debated how oxygen rose to modern concentrations.
大約在24億年前發生了稱作「大氧化事件(Great Oxidation Event)」的劇變後,地球大氣層的組成當中第一次出現了氧氣。然而,還要再等到4億年前左右,這個重要成分在大氣中的濃度才會首度攀升至跟現今十分接近。這個轉變引領了地球生物的演化方向,而研究人員對氧氣如何提升至現今的濃度也已經爭論許久。
In a study published in the journal Proceedings of the National Academy of Sciences, Professor Tim Lenton, of the University of Exeter, and his colleagues theorised that the earliest land plants, which colonised the land from 470 million years ago onwards, are responsible for the levels of oxygen that sustains our lives today. Their emergence and evolution permanently increased the flux of organic carbon into sedimentary rocks, the primary source for atmospheric oxygen, thus driving up oxygen levels in a second oxygenation event and establishing a new, stable oxygen cycle.
艾希特大學的Tim Lenton和他的同僚在刊登於《美國國家科學院院刊》(Proceedings of the National Academy of Sciences)的研究中,提出了一項理論認為自47000萬年前開始最早往陸地拓殖的植物,讓氧氣濃度上升至今日人類得以維生的程度。它們的出現和演化永久增加了有機碳進入沉積岩的速率,由於這個過程是大氣中氧氣的主要來源,因此這促使第二次氧化事件發生並提升了大氣氧濃度,使得氧循環進入了一種全新的穩定狀態。
Earth's early plant biosphere consisted of simple bryophytes, such as moss, which are non-vascular -- meaning they do not have vein-like systems to conduct water and minerals around the plant. Using computer simulations, the researchers first estimated that these plants could have generated roughly 30% of today's global terrestrial net primary productivity by about 445 million years ago.
地球最早的植物生物圈成員之一為簡單的苔蘚植物門(bryophyte),包含蘚苔在內的這些植物缺乏維管束(vascular)構造,意味著它們不具有連通整株植物可以用來傳輸礦物質和水分的脈絡狀系統。研究人員利用電腦模擬的結果,最初預估約莫在44500萬年前,這些植物的生產力已經可以達到當今全球陸地淨初級生產量(net primary productivity)30%左右。
When the properties of modern bryophytes were taken into account, including their elemental composition and effects on rock weathering, they found that modern levels of atmospheric oxygen were achieved by 420 to 400 million years ago, consistent with independent evidence.
當研究人員將現存苔蘚植物的性質,像是元素組成以及對岩石風化作用的影響納入模型當中,他們發現大氣氧濃度在42000萬年至4億年前到達與現在相同的程度,這跟從另一種獨立證據推估出來的時間點相符。
These findings therefore suggest that the first land plants, such as the humble moss, created the stable oxygen-rich atmosphere that allowed large, mobile, intelligent animal life, including humans, to evolve.
因此,這些發現指出最初登陸的植物,像是不起眼的苔蘚卻是形成富含氧氣的穩定大氣層的幕後推手,並進一步讓大型、活動力強、有心智能力的動物,包含人類在內的生命得以演化出來。
Professor Tim Lenton, of the University of Exeter, said: "It's exciting to think that without the evolution of the humble moss, none of us would be here today. Our research suggests that the earliest land plants were surprisingly productive and caused a major rise in the oxygen content of Earth's atmosphere."
艾希特大學的 Tim Lenton教授說:「若這些不起眼的苔蘚從未演化出來,則今日我們之中的任何一位都不會站在這裡,這個想法相當具有啟發性。我們的研究主張最初的陸生植物生產力其實相當驚人,而促使地球大氣層的氧含量大幅提升。」
引用自:University of Exeter. "Humble moss helped create our oxygen-rich atmosphere." ScienceDaily. ScienceDaily, 15 August 2016. 

論文來源:Timothy M. Lenton, Tais W. Dahl, Stuart J. Daines, Benjamin J. W. Mills, Kazumi Ozaki, Matthew R. Saltzman, Philipp Porada. Earliest land plants created modern levels of atmospheric oxygenProceedings of the National Academy of Sciences, 2016