2018年7月27日 星期五

透過分析硫而證實氧氣出現的時間


透過分析硫而證實氧氣出現的時間
萊斯大學的科學家利用河水證實大氣中的氧含量在27億年前開始上升
Mike Williams
科學家長久以來認為氧氣在27億年前開始出現在地球的低層大氣中,使得我們所知的許多生命得以誕生。而一位萊斯大學的研究人員得到了新的證據來支持這個數字。
此為加拿大安大略省沃瓦鎮的高山瀑布。這些河水流過並侵蝕了蘇必略穩定地塊露出的古老岩石,其中蘊含了地球大氣在27億年前如何演變的線索。一項由萊斯大學進行的研究,顯示這些岩石中由硫寫下的紀錄標示出地球大氣當時出現了劇烈變化,進而使複雜的生命得以誕生。圖片來源:Tom Samworth/www.itsabouttravelling.com

2018年7月25日 星期三

從十幾億年前的湖床沉積物中取得地球古代生物圈的線索



從十幾億年前的湖床沉積物中取得地球古代生物圈的線索
這項發現有助於指引天文學家如何尋找太陽系以外的生命
在加拿大安大略省,科學家從14億年前湖泊蒸發出來的沉積物中揀選出一具含有古代氧氣的樣品。從裡面得到的最新證據顯示動物即將出現的那段時期中,地球的大氣層和生物圈呈現何種樣貌。

2018年7月18日 星期三

永凍土融化時其中的微生物群會助長氣候變遷


永凍土融化時其中的微生物群會助長氣候變遷
一項由昆士蘭大學領導的研究可以讓我們更加準確地預測未來100年內,由於永凍土融化而釋放出來的溫室氣體對全球暖化速率造成的影響。
泥炭土丘正在融化並崩解,逐漸轉變成沼澤。(來源:Moira Hough)

2018年7月16日 星期一

科學家在中國西部發現世上年代最輕的帶狀鐵礦


原文網址:https://www.ualberta.ca/science/science-news/2018/july/earths-youngest-banded-iron-formation-china-discovered
科學家在中國西部發現世上年代最輕的帶狀鐵礦
此發現證明富含鐵的海水的消失時間比過往認為的還要晚了許多
Katie Willis
根據亞伯達大學的地質學家進行的研究,這座地球史上年代最輕的帶狀鐵礦,將會改變科學家對複雜生物演化歷程的理解。
位於中國西部,地球年代最輕的帶狀鐵礦。圖片來源:Zhiquan Li
精確的定年結果顯示這座位於中國西部的帶狀鐵礦(banded iron formation)屬於寒武紀。確切來說此地層的年紀大約為5.27億年,跟迄今發現的多數帶狀鐵礦相比年輕許多。距今38億年前左右開始有帶狀鐵礦沉積,科學家長久以來認為在寒武紀開始的5.4億年前,帶狀鐵礦早就已經停止形成。
共同作者,亞伯達大學地球和大氣科學系的教授Kurt Konhauser表示:「這項發現相當關鍵,因為這是首次在寒武紀早期觀察到類似前寒武紀才會出現的帶狀鐵礦。最近從其他地球化學指標得到的結論認為當時的環境普遍來說含有大量的鐵,而此帶狀鐵礦提供了最具決定性的證據顯示的確如此。」Konhauser負責指導研究主持人Zhiquan Li,這位北京大學的博士候選人在亞伯達大學進行交換的期間進行了此研究。
眾所皆知動物是在寒武紀早期開始崛起,因此當時海水中的氧濃度應該已經跟現在差不多。論文共同作者,Konhauser實驗室的博士候選人Leslie Robbins表示:「這項推論相當重要。長久以來科學家認為氧氣不足限制了複雜生命的演化過程,因此這股壓力應該是在寒武紀早期有所減輕,動物才能出現。」
研究人員將此帶狀鐵礦的地質和地球化學性質跟古代和現代的樣品對比,以找出和它們沉積時類似的環境。研究人員依據稀土元素的分布模式,提出這座帶狀鐵礦是在一個富含鐵的分層盆地中(stratified iron-rich basin)的化學躍變層之內或附近形成。
Kurt Konhauser表示:「我們未來的研究目標是定量這些寒武紀的帶狀鐵礦在中國的分佈有多廣,以及類似的沉積物是否能在世上其他地方找到。」

Scientists discover Earth’s youngest banded iron formation in western China
Discovery provides evidence of iron-rich seawater much later than previously thought
The discovery of Earth’s youngest-ever banded iron formation is changing how scientists understand the evolution of complex life, according to a study by University of Alberta geologists.
The banded iron formation, located in western China, has been conclusively dated as Cambrian in age. Approximately 527 million years old, this formation is young by comparison to the majority of discoveries to date. The deposition of banded iron formations, which began approximately 3.8 billion years ago, had long been thought to terminate before the beginning of the Cambrian Period at 540 million years ago.
“This is critical, as it is the first observation of a Precambrian-like banded iron formation that is Early Cambrian in age. This offers the most conclusive evidence for the presence of widespread iron-rich conditions at a time, confirming what has recently been suggested from geochemical proxies,” said Kurt Konhauser, professor in the Department of Earth and Atmospheric Sciences and co-author. Konhauser supervised the research that was led by Zhiquan Li, a PhD candidate from Beijing while on exchange at UAlberta.
The Early Cambrian is known for the rise of animals, so the level of oxygen in seawater should have been closer to near modern levels. “This is important as the availability of oxygen has long been thought to be a handbrake on the evolution of complex life, and one that should have been alleviated by the Early Cambrian,” says Leslie Robbins, a PhD candidate in Konhauser’s lab and a co-author on the paper.
The researchers compared the geological characteristics and geochemistry to ancient and modern samples to find an analogue for their deposition. The team relied on the use of rare earth element patterns to demonstrate that the deposit formed in, or near, a chemocline in a stratified iron-rich basin.
“Future studies will aim to quantify the full extent of these Cambrian banded iron formations in China and whether similar deposits can be found elsewhere,” says Kurt Konhauser.
原始論文:Zhiquan Li et al. Earth's youngest banded iron formation implies ferruginous conditions in the Early Cambrian oceanScientific Reports, 2018 DOI: 10.103841598-018-28187-2
引用自:University of Alberta. "Scientists discover Earth's youngest banded iron formation in western China”

2018年7月12日 星期四

在大氧化事件獲得的成功以前,早期地球的氧氣濃度曾數度上升卻又下降


在大氧化事件獲得的成功以前,早期地球的氧氣濃度曾數度上升卻又下降
Peter Kelley
在距今大約24億年前發生的大氧化事件(Great Oxidation Event)成功讓整個地球全面氧化,而由華盛頓大學進行的新研究顯示在此之前的數億年間,地球的氧氣濃度曾經提升卻又下跌不只一次。
西澳的Jeerinah組地層,由華盛頓大學領導的團隊在此發現氮同位素有突然的轉變。主要作者Matt Koehler表示:「氮同位素訴說了一段關於海洋表層氧化的故事。這段含有氧氣的時期持續時間不超過5000萬年,範圍則涵蓋了一座寬達數百公里的洋盆。」圖片來源:Roger Buick
一項新研究提出的證據指出地球在非常久遠以前有些微氧氣存在於大氣與廣大的海洋表層。這是第二筆且年代更加古老的證據顯示這種情形曾經發生,表示地球的氧化是在漫長歲月中不斷嘗試卻又失敗的複雜過程。
這項發現對於尋找地球以外的生命也有所啟發。在未來數年我們將會迎來更加有力的地面與太空望遠鏡,它們具備可以分析遙遠行星大氣的能力。這項成果有助於天文學家在利用望遠鏡尋找地外生命時避免剔除掉太多呈現偽陰性」的行星――也就是適合生物居住的行星因為氧氣濃度低到無法被偵測,使得第一眼看來可能不適合生物居住。
論文主要作者,華盛頓大學地球和太空科學系的博士生Matt Koehler表示:「直到大氧化事件之前,氧氣在海洋和大氣中的生成與消滅是一場長期抗戰,沒有明確跡象顯示最後誰能獲勝。」這篇新論文刊登於79日當周的《美國國家科學院院刊》(Proceedings of the National Academy of Sciences)
「這些短暫的氧化事件是在整場戰爭中,當平衡傾向對氧化較為有利時所出現的戰役結果。」
論文共同作者,華盛頓大學地球和太空科學系的教授Roger Buick2007年參與的國際科學團隊找到的證據顯示,約莫在大氧化事件發生的5億至10億年前,曾經有段時期地球上存在著些微氧氣。當時他們鑽探至澳洲西部麥克雷山頁岩層的沉積岩深處,並分析樣本中的稀有金屬鉬和錸――這兩種金屬的沉積取決於環境中的氧氣――而得到該結論。
Koehler領導的團隊現在證明了地球過去還有另一段氧氣曾經短暫出現的時期,它比前次發現還早了大約1.5億年,也就是距今26.6億年前左右,而持續時間則不超過5000萬年。在這項研究中他們利用了可以指示氧氣的兩種不同指標:氮同位素和硒元素。同樣地,這兩種物質能用各自的方式指出氧氣曾經存在。
「我們在這篇論文中以高解析度的方法偵測出另一次有些微氧氣出現的短暫時期,」Koehler表示。「氮同位素訴說了一段關於海洋表層氧化的故事。這段含有氧氣的時期持續時間不超過5000萬年,範圍則涵蓋了一座寬達數百公里的洋盆。」
團隊分析的樣品為2012Buick在西澳西北部另一處稱為Jeerinah組的地層所鑽探出來的樣品。
研究人員鑽取的兩個岩芯位置雖然相隔了大約300公里,但還是位於同一個沉積岩層。其中一組岩芯樣品為沉積在淺水的沉積物,另一組則是沉積在深水的沉積物。Buick表示分析這兩組連續堆積的岩層可以看出氮同位素逐漸發生變化,然後又回歸平淡。「它所代表的意義只能用環境裡出現了氧氣來解釋。它的出現實在令人感到訝異,而又如此突然。」
氮同位素可以顯示出某些海洋微生物的活動,像是利用氧氣形成硝酸鹽的微生物,以及其他利用這些硝酸鹽產生能量的微生物。從氮同位素得出的數據顯示了海洋表層的狀況,另一方面硒含量則指出古代地球的空氣中有氧氣存在。Koehler表示當時深海可能處於缺氧狀態。
團隊發現只有淺海鑽井中的樣品有大量的硒,意謂著硒來自於附近的陸地且並未到達深海。陸地上的硒存在於含硫礦物中。當大氣裡的氧濃度升高,氧化造成的風化作用(Buick表示:也就是岩石生鏽)會讓更多硒從陸地淋溶出來而輸送到海洋當中。
「然後硒會累積在海洋在沉積物裡面,」Koehler表示。「因此當我們在海洋沉積物中測量到硒的含量出現高峰時,就代表大氣中的氧氣有短暫增加的現象。」
BuickKoehler表示這項發現也能用於偵測太陽系以外的行星之上是否有生命。
Buick表示:「一般認為氧氣是大氣中最明顯的生物跡象(biosignature),但這項研究證明了行星的氧氣變成永久存在的過程中,可能會有幾個時期地表環境會有氧氣,但僅持續數百萬年之後就再次滑落成無氧狀態。」
「因此,如果無法在一顆行星的大氣層中偵測到氧氣,也不代表它不適合生命居住,甚至是缺乏行光合作用的生命。可能只是因為它的氧氣來源還不夠多,只能在短時間之內壓過消耗氧氣的因子而無法延長更久。」
「換句話說,缺乏氧氣在偵測生物時很容易就呈現「偽陰性」。」
Koehler補充:「你可能會看著一顆行星而找不到一丁點氧氣――但它實際上可能充滿了微生物。」

Oxygen levels on early Earth rose and fell several times before the successful Great Oxidation Event
Earth’s oxygen levels rose and fell more than once hundreds of millions of years before the planetwide success of the Great Oxidation Event about 2.4 billion years ago, new research from the University of Washington shows.
The evidence comes from a new study that indicates a second and much earlier “whiff” of oxygen in Earth’s distant past — in the atmosphere and on the surface of a large stretch of ocean — showing that the oxygenation of the Earth was a complex process of repeated trying and failing over a vast stretch of time.
The finding also may have implications in the search for life beyond Earth. Coming years will bring powerful new ground- and space-based telescopes able to analyze the atmospheres of distant planets. This work could help keep astronomers from unduly ruling out “false negatives,” or inhabited planets that may not at first appear to be so due to undetectable oxygen levels.
“The production and destruction of oxygen in the ocean and atmosphere over time was a war with no evidence of a clear winner, until the Great Oxidation Event,” said Matt Koehler, a UW doctoral student in Earth and space sciences and lead author of a new paper published the week of July 9 in the Proceedings of the National Academy of Sciences.
“These transient oxygenation events were battles in the war, when the balance tipped more in favor of oxygenation.”
In 2007, co-author Roger Buick, UW professor of Earth and space sciences, was part of an international team of scientists that found evidence of an episode — a “whiff” — of oxygen some 50 million to 100 million years before the Great Oxidation Event. This they learned by drilling deep into sedimentary rock of the Mount McRae Shale in Western Australia and analyzing the samples for the trace metals molybdenum and rhenium, accumulation of which is dependent on oxygen in the environment.
Now, a team led by Koehler has confirmed a second such appearance of oxygen in Earth’s past, this time roughly 150 million years earlier — or about 2.66 billion years ago — and lasting for less than 50 million years. For this work they used two different proxies for oxygen — nitrogen isotopes and the element selenium — substances that, each in its way, also tell of the presence of oxygen.
“What we have in this paper is another detection, at high resolution, of a transient whiff of oxygen,” said Koehler. “Nitrogen isotopes tell a story about oxygenation of the surface ocean, and this oxygenation spans hundreds of kilometers across a marine basin and lasts for somewhere less than 50 million years.”
The team analyzed drill samples taken by Buick in 2012 at another site in the northwestern part of Western Australia called the Jeerinah Formation.
The researchers drilled two cores about 300 kilometers apart but through the same sedimentary rocks — one core samples sediments deposited in shallower waters, and the other samples sediments from deeper waters. Analyzing successive layers in the rocks years shows, Buick said, a “stepwise” change in nitrogen isotopes “and then back again to zero. This can only be interpreted as meaning that there is oxygen in the environment. It’s really cool — and it’s sudden.”
The nitrogen isotopes reveal the activity of certain marine microorganisms that use oxygen to form nitrate, and other microorganisms that use this nitrate for energy. The data collected from nitrogen isotopes sample the surface of the ocean, while selenium suggests oxygen in the air of ancient Earth. Koehler said the deep ocean was likely anoxic, or without oxygen, at the time.
The team found plentiful selenium in the shallow hole only, meaning that it came from the nearby land, not making it to deeper water. Selenium is held in sulfur minerals on land; higher atmospheric oxygen would cause more selenium to be leached from the land through oxidative weathering — “the rusting of rocks,” Buick said — and transported to sea.
“That selenium then accumulates in ocean sediments,” Koehler said. “So when we measure a spike in selenium abundances in ocean sediments, it could mean there was a temporary increase in atmospheric oxygen.”
The finding, Buick and Koehler said, also has relevance for detecting life on exoplanets, or those beyond the solar system.
“One of the strongest atmospheric biosignatures is thought to be oxygen, but this study confirms that during a planet’s transition to becoming permanently oxygenated, its surface environments may be oxic for intervals of only a few million years and then slip back into anoxia,” Buick said.
“So, if you fail to detect oxygen in a planet’s atmosphere, that doesn’t mean that the planet is uninhabited or even that it lacks photosynthetic life. Merely that it hasn’t built up enough sources of oxygen to overwhelm the ‘sinks’ for any longer than a short interval.
“In other words, lack of oxygen can easily be a ‘false negative’ for life.”
Koehler added: “You could be looking at a planet and not see any oxygen — but it could be teeming with microbial life.”
原始論文:Matthew C. Koehler, Roger Buick, Michael A. Kipp, Eva E. Stüeken, Jonathan Zaloumis. Transient surface ocean oxygenation recorded in the 2.66-Ga Jeerinah Formation, AustraliaProceedings of the National Academy of Sciences, 2018; 201720820 DOI: 10.1073/pnas.1720820115
引用自:University of Washington. "Oxygen levels on early Earth rose, fell several times before great oxidation even." 

2018年7月9日 星期一

全球氣候跟侵蝕速率的關係?


全球氣候跟侵蝕速率的關係?
Josef Zens
過去數十年,地質科學家一直對地球表面的侵蝕速率和全球氣候變化之間的潛在關聯深感興趣,不過其中的成因和作用仍然不明。然而,一項新研究則直接質疑關聯本身的存在與否。由德國波茨坦地質科學研究中心、波茨坦大學、格勒諾布爾大學和愛丁堡大學組成的研究團隊重新檢視了過往研究中指出的,在數百萬年前的冰期間冰期循環開始之後侵蝕作用也加速的30個地點。結果近乎在所有地點中提出的侵蝕和全球氣候的潛在關聯都無法被確實證明。他們的研究成果刊登於期刊《自然》(Nature)
西阿爾卑斯山的Pilatte冰河(圖片來源:Taylor Schildgen)

2018年7月5日 星期四

重建過去氣候從而得知未來氣候變化的線索


重建過去氣候從而得知未來氣候變化的線索
Kayla Zacharias
在過去6600萬年最溫暖的時期中,溫室氣體都是推動氣候變化的主要因素。這項發現對於長期氣候變化背後的驅動因子提供了新的見解。
南極洲跟澳洲大約在始新世(5600萬至2290萬年前)末期分離,造成兩者之間形成了一條深沉的水道而改變了海洋環流模式。有些研究人員相信始新世的「暖房」環境結束之際的溫度下降就是由此變化驅使,但有些研究人員則認為應該要歸因於二氧化碳濃度的下降。
如果冷化是因為海洋環流的變化導致,由於地球的熱量會重新分配,所以赤道地區的溫度會上升而極區則會下降。但如果是溫室氣體的濃度發生變化,則會影響到留在地球大氣的總熱量,造成包含熱帶的每個地區都會冷化――而這便是發表於期刊《自然》(Nature)的研究中所發現到的現象。
「我們重建出來熱帶和極區的溫度同步演變現象只能由溫室氣體造成的作用來解釋。」論文第一作者,荷蘭烏特勒支大學的博士候選人Margot Cramwinckel表示,「跟我們的發現相符的假說只有一個:始新世的長期冷化是由溫室氣體變化導致。這讓我們對於長期氣候變遷背後的驅動因素有了更加長足的瞭解,在預測未來氣候變遷會如何發展時,這點相當重要。」
氣候變遷在極區造成的影響通常比地球上其他地方都還要強烈,這種現象稱作「極區放大效應」(polar amplification)
雖然始新世的氣候大多時候都極為溫暖,造成極區附近幾乎或根本就沒有冰層,但研究發現始新世時極區附近的溫度變化仍比熱帶劇烈許多。
Cramwinckel表示:「就算是在一個幾乎無冰的世界中,溫度下降時極區的變冷程度仍然比熱帶還要高。這代表溫室氣體光憑自身作用就能造成極區放大效應。」
研究人員還有一個關於極區放大效應的問題:它會達到某個極限嗎?
論文共同作者,普渡大學地球、大氣與行星科學的教授Matthew Huber表示:「我們的結果支持了這項說法――在溫暖的氣候下,極區放大效應會在某個程度到達飽和,而不會隨著進一步的暖化繼續增加下去。」
研究人員從象牙海岸附近鑽出的深海沉積物岩芯中,探討一種生活在海洋表層的單細胞生物「奇古菌」(Thaumarchaeota)細胞膜上的脂質。由於奇古菌會隨著溫度變化改變它們的細胞膜成分,使得它們可以做為溫度指標。
他們把觀察結果結合Huber在普渡大學的團隊開發出來的氣候模型,來交互映證出始新世期間的溫度變化歷程。
「為了歸納出在不同二氧化碳濃度下氣候達到平衡時的狀態,我們用了將近四年的時間持續運算這項模型。」Huber表示,「這是氣候模型首次能獲得熱帶海洋表層溫度的主要趨勢,以及涵蓋各種氣候條件下,將近2000萬年中的氣溫變化梯度。唯一的問題是模型需要的二氧化碳變化量比觀測出來的還要高,顯示此模型對於二氧化碳還不夠靈敏。」
研究人員在重現始新世期間熱帶和寒帶之間的溫度梯度時一直以來都遇到了相當困難。而新的氣候模型能夠克服過去模型所遇到的多數問題。

Reconstruction of past climate provides clues about future climate change
Greenhouse gases were the main driver of climate throughout the warmest period of the past 66 million years, providing insight into the drivers behind long-term climate change.
Antarctica and Australia separated around the end of the Eocene (56 to 22.9 million years ago), creating a deep water passage between them and changing ocean circulation patterns. Some researchers believe these changes were the drivers of cooling temperatures near the end of the Eocene "hothouse" period, but some think declining levels of carbon dioxide were to blame.
If the cooling had been caused by changes in ocean circulation, regions around the equator would have warmed as the polar regions cooled, shifting the distribution of heat on Earth. But changing the concentration of greenhouse gases would affect the total heat trapped in Earth’s atmosphere, causing cooling everywhere (including in the tropics), which is what the researchers found. The findings were published in the journal Nature.
“The synchronized evolution of tropical and polar temperature we reconstructed can only be explained by greenhouse gas forcing,” said Margot Cramwinckel, a Ph.D. candidate at Utrecht University in the Netherlands and first author of the paper. “Our findings are uniquely compatible with the hypothesis that the long-term Eocene cooling was driven by greenhouse gases. This greatly improves our understanding of the drivers behind long-term climate change, which is important in order to predict the development of future climate change.”
Climate change often has more intense effects near the poles than elsewhere on the planet, a phenomenon known as polar amplification.
The study found that temperature change was more dramatic near the poles than in the tropics during the Eocene, even though most of the period was extremely warm, leaving little to no ice near the poles.
“Even in a largely ice-free world, the poles cooled more than the tropics as temperature dropped,” Cramwinckel said. “This indicates that greenhouse gas forcing by itself can cause polar amplification.”
The researchers had one more question about polar amplification: does it reach some sort of limit?
“Our results support the idea that polar amplification saturates out at some point in warm climates and does not continue to increase with further warming,” said Matthew Huber, a professor of earth, atmospheric and planetary sciences at Purdue University and co-author of the paper.
As a proxy for temperature, the research team looked at membrane lipids of simple, sea-surface dwelling organisms called Thaumarchaeota that change their membrane composition as temperatures change in deep sea sediment cores drilled near the Ivory Coast.
They combined these observations with climate models, produced by Huber’s team at Purdue, to mesh together a timeline of temperature throughout the Eocene.
“The simulations took about four years of continuous computing to achieve equilibrated climate states at various carbon dioxide levels,” Huber said. “For the first time, the climate model is capable of capturing the main trends in tropical sea surface temperatures and temperature gradients across a range of climate encompassing nearly 20 million years. The only problem is that the simulations required more carbon dioxide changes than observed, which demonstrates that this model is not sensitive enough to carbon dioxide.”
Historically, researchers have had trouble reproducing temperature gradients between the tropics and the poles throughout the Eocene. These new climate models are capable of overcoming most of the issues faced by past models.
原始論文:Margot J. Cramwinckel, Matthew Huber, Ilja J. Kocken, Claudia Agnini, Peter K. Bijl, Steven M. Bohaty, Joost Frieling, Aaron Goldner, Frederik J. Hilgen, Elizabeth L. Kip, Francien Peterse, Robin van der Ploeg, Ursula Röhl, Stefan Schouten, Appy Sluijs. Synchronous tropical and polar temperature evolution in the EoceneNature, 2018; DOI: 10.1038/s41586-018-0272-2
引用自:Purdue University. " Reconstruction of past climate provides clues about future climate change."