2017年7月31日 星期一

新研究挑戰了目前對於生物如何遷居深海熱泉的理論

原文網址:http://www.mbari.org/new-study-challenges-prevailing-theory-about-how-deep-sea-vents-are-colonized/" 
新研究挑戰了目前對於生物如何遷居深海熱泉的理論
Kim Fulton-Bennett
甫刊登於英國皇家學會報告B(Proceedings of the Royal Society B)的論文敘述了在加利福尼亞南部發現兩座截然不同的熱泉區。雖然它們相對而言十分靠近彼此,但兩座熱泉擁有的動物群集卻大不相同。學界一般的假設中認為鄰近的熱泉會擁有類似動物群集,但此篇新論文與其相反,提出區域地質和熱泉噴出流體的化學性質是影響熱泉生物群集的重要因子。

2017年7月28日 星期五

大陸分裂、火山排放的碳與演化之間的關聯

原文網址:http://www.cam.ac.uk/research/news/link-identified-between-continental-breakup-volcanic-carbon-emissions-and-evolution
大陸分裂、火山排放的碳與演化之間的關聯
研究人員發現超大陸在數億年間的形成和分裂過程控制了火山排放的碳。發表在期刊《科學》(Science)的這項成果可能讓科學家需要重新解讀碳循環在地球歷史上的演變過程,而它又如何影響地球適居性的變化。

2017年7月27日 星期四

科學家闡明沉入深部地球的碳的性質

原文網址:http://www.esrf.eu/home/news/general/content-news/general/scientists-shed-light-on-carbons-descent-into-the-deep-earth.html
科學家闡明沉入深部地球的碳的性質
探究地球內部狀態的重要性不只在於讓我們有機會一探地球過往的歷史,也能使我們瞭解現今環境與其未來走向。

2017年7月26日 星期三

海邊洞穴保存了5000年來關於海嘯的簡史

原文網址:http://news.rutgers.edu/research-news/sea-cave-preserves-5000-year-snapshot-tsunamis/20170623#.WXW8eIiGPct
海邊洞穴保存了5000年來關於海嘯的簡史
歷史紀錄呈現出我們仍然無法準確地預測會引發海嘯的地震
By Ken Branson
一組國際科學家團隊挖掘印尼的海邊洞穴而發現世上最完整的海嘯紀錄。這段由沉積物紀錄的5000年簡史首次顯示我們對引發巨浪的地震的發生時機幾乎是一無所知。

2017年7月24日 星期一

為什麼霸王龍跑不快?又為什麼最大的動物不一定是最迅速的?

原文網址:https://www.uni-jena.de/en/Research+News/FM170717_Speed_en.html
為什麼霸王龍跑不快?又為什麼最大的動物不一定是最迅速的?
生物多樣性研究人員陳述了體型和速度之間的關係

2017年7月21日 星期五

化石場址顯示侏儸紀早期海洋缺氧帶來的影響

原文網址:www.sciencedaily.com/releases/2017/07/170715155134.htm
化石場址顯示侏儸紀早期海洋缺氧帶來的影響
結合化石紀錄和化學訊號,科學家得以找出全球海洋缺氧時期如何帶給侏儸紀早期的海洋生態系壓力,使其生物群集的組成變成僅有少數生物。

2017年7月19日 星期三

地核內部的量子力學

原文網址:https://www.uni-wuerzburg.de/en/sonstiges/meldungen/detail/artikel/quantenmechanik-im-erdkern-1/
地核內部的量子力學
符茲堡大學的物理學家發現了鎳擁有的奇特性質,或許有助於解釋一些關於地球磁場的謎團。

2017年7月18日 星期二

礦物晶體幫助火山對付壓力

原文網址:https://news.uaf.edu/crystals-help-volcanoes-cope-with-pressure/
礦物晶體幫助火山對付壓力
Meghan Murphy
阿拉斯加大學費爾班克斯分校的研究人員發現火山透過一種獨門方法來處理壓力――礦物晶體。
根據發表在《地質學期刊》(Journal of Geology)的一篇新研究,由微小晶體組成的結構可以減少岩漿上升時累積的內部壓力,而降低火山噴發的猛烈程度。
礦物晶體可以在短短18分鐘之內形成於上升的熔岩當中。如果岩漿中有超過百分之二十是晶體,它們就能像護欄一般地將氣體疏導至火山內部的潛在裂隙,或者是通往地表的通道。
主要作者,阿拉斯加大學費爾班克斯分校的地質科學博士生Amanda Lindoo表示:「當氣體無法排出會造成壓力持續累積而造成麻煩,結果可能是發生相當猛烈的火山噴發並產生火山灰柱。不過礦物晶體可以減緩這種情形。」
共同作者,阿拉斯加大學費爾班克斯分校地球物理所的火山學家Jessica Larsen表示這項發現挑戰了普遍接受的預測中,認為岩漿的矽含量是影響氣體逸散的主要因素。
她說一項常見的經驗法則是矽含量相當高的岩漿流動速度比較慢,造成內部的氣體較難逸散。雖然科學家知道這種岩漿也傾向生成較少的礦物晶體,但她表示並沒有太多的研究將主題放在晶體在火山噴發中扮演的腳色。
阿留申群島、喀斯開山脈和中美洲的火山激起了Larsen的好奇心。這些地區的火山有些跟理論一致地具有高含量的矽,但有些火山的岩漿矽含量卻不高。
她說:「若依照經驗法則,岩漿矽含量不高的火山應該不會發生災難性的猛烈噴發。但它們的確發生了。我們想要知道是什麼使這項法則的預測有所偏離,因為瞭解火山爆發造成的災害是很重要的。
為了研究礦物晶體,LindooLarsen一同在地球物理所的實驗岩石學實驗室中,以高溫爐將火山岩加熱至1300來將它們重新融化成液態熔岩。另外實驗室中還有加壓幫浦、壓力管線和閥門。
Lindoo利用從阿留申群島噴出的火山產物來製造岩漿。她對岩漿施予極大的壓力來模擬地球內部的壓力,接著將壓力減少以模仿矽含量低的岩漿往上升的過程。
隨著岩漿上升,溶於其中的水會形成氣泡――就像打開加壓過的汽水瓶時會冒出氣泡一樣。於此同時,熔岩內部也會生成礦物晶體。Lindoo接著比較實驗室樣品跟火山噴發的產物,她發現在生成許多結晶的樣品中,晶體的連結模式可以將氣體疏導出去。
Larsen表示溫度、岩漿的水含量以及岩漿上升的速度都會影響礦物結晶的形成。
Larsen說:「近來對於礦物晶體的形成方式我們已經有所瞭解,但是晶體對氣體逸散有多麼深遠的影響我們卻一無所知。」
Larsen表示她會繼續進行研究,但下一階段是要探討不同形狀和大小的晶體對氣體的逸散方式會有什麼樣的影響。
共同研究人員為英國布里斯托大學的科學家。美國國家科學基金會資助了本項研究。

Crystals help volcanoes cope with pressure
University of Alaska Fairbanks researchers have discovered that volcanoes have a unique way of dealing with pressure — through crystals.
According to a new study published in the Journal of Geology, a network of microscopic crystals can lessen the internal pressure of rising magma and reduce the explosiveness of eruptions.
Crystals can form in the rising molten rock in as little as 18 minutes. If the magma becomes more than 20 percent crystals, they can act like guard rails that funnel gas to possible cracks within the volcano or to the opening at the Earth’s surface.
“The problem is when the gas can’t get out,” said Amanda Lindoo, lead author and UAF geosciences doctoral student. “That causes a buildup in pressure that can lead to the very explosive eruptions that shoot ash plumes. The crystals can alleviate that.”
Co-author Jessica Larsen, a volcanologist with the UAF Geophysical Institute, said the findings challenge the prevailing assumption that the amount of silica in magma is the major driver in gas escape.
The usual rule of thumb, she said, is that magmas with lots of silica are slow-moving, which can make it hard for gas to escape. While scientists know that these magmas tend to form fewer crystals, she said not much research has focused on the crystal’s role in eruptions.
Volcanoes in the Aleutian Islands, the Cascade Range and Central America aroused Larsen’s curiosity. Some volcanoes in those regions have magma consistently high in silica, while others have low-silica magma.
“If you follow the rule of thumb, then the volcanoes with low-silica magma shouldn’t produce hazardous, explosive eruptions,” she said. “And yet they do. We wanted to know what was swinging the pendulum, because it’s important to understanding the hazards of eruptions.”
To study the crystals, Lindoo worked with Larsen in the Geophysical Institute’s Experimental Petrology Lab, which has a furnace that can superheat volcanic rocks up to 2,400 F and melt them back into molten lava. It also has pressurizing pumps, pressure lines and valves.
Lindoo created magma from eruptive materials from the Aleutian Islands. She applied extreme pressure to the magma to simulate pressures in the Earth, but then reduced pressure to mimic the way low-silica magma rises.
As the magma “rose,” dissolved water formed into gas bubbles — much as bubbles form when opening a bottle of pressurized soda. Crystals also grew in the molten part. Lindoo then compared lab samples to those taken from volcanic explosions and found patterns of crystal networks channeling gas where crystal formation was high.
Larsen said temperature, the amount of water in the magma and the speed of the magma’s rise all play a role in crystal formation.
“For awhile we’ve understood how crystals form,” said Larsen. “But we didn’t know how profoundly the crystals influenced gas escape.”
Larsen said she will continue the research, but the next phase will look at how the different sizes and shapes of crystals influence gas escape.
The researchers collaborated with scientists at the University of Bristol in the United Kingdom. The National Science Foundation funded the study.
原始論文:A. Lindoo J.F. Larsen K.V. Cashman J. Oppenheimer. Crystal controls on permeability development and degassing in basaltic andesite magmaJournal of Geology, 2017 DOI: 10.1130/G39157.1

引用自:University of Alaska Fairbanks. "Crystals help volcanoes cope with pressure: Crystal networks in magma can act like guard rails to funnel gas out."

2017年7月17日 星期一

太初時代的巨大變形動物

原文網址:http://www.cam.ac.uk/research/news/big-shape-shifting-animals-from-the-dawn-of-time
太初時代的巨大變形動物
在五億年以前,海洋化學成分的重大改變使得第一批大型生物――或許也是某些最早的動物得以出現並繁榮生長,此時間點同時也標記出地球環境的改變讓動物接管了這個世界。
為什麼地球上的動物體型會在某個時刻由小變大?劍橋大學和東京工業大學的研究人員找出了某些最初的大型生物,稱作「脈形類」(rangeomorph),藉由從周圍環境吸收養分時能改變體型和形狀的能力而可以長到兩公尺高。
刊登在期刊《自然―生態學和演化》(Nature Ecology and Evolution)的研究結果也有助於解釋地球上的生命如何從成員一度僅有微生物,最後變成能演化出恐龍和藍鯨之類的巨大生物。
脈形類是地球上最初的大型生物之一,牠們出現的時候其他大多數生命形式的體型得用顯微鏡才能看見。某些脈形類的高度僅有數公分,但有些最多可以長到兩公尺高。
這些居住在海中的生物生存於63500萬年至54100萬年前的埃迪卡拉紀(Ediacaran period)。牠們柔軟的身體是由許多分枝組成,而每根分枝又分岔出許多更小的旁枝,使牠們的外型呈現出幾何學中的碎形,就像我們今天所看到的肺部血管、蕨類或雪花一樣。
由於沒有任何一種跟脈形類相似的現存生物,使得科學家難以瞭解牠們如何攝食、生長或者繁殖,更別說是牠們跟其他現存動物族群之間可能的關係為何。然而,雖然牠們某種程度上看起來很像植物,科學家相信牠們或許是存活在地球的最早動物之一。
論文第一作者,劍橋大學生命科學系與東京工業大學地球生命研究所的Jennifer Hoyal Cuthill博士表示:「我們想要知道為什麼這些大型生物會在此特定時間點出現在地球歷史上。牠們以相當巨大的體型突如其來地出現在化石紀錄中,我們猜測牠們跟海洋化學的改變只是剛好在同一時刻發生,或者是有直接因果關係?」
研究人員利用微電腦斷層攝影、攝影測量法以及數學和電腦模型來觀察從加拿大紐芬蘭西南方、英國和澳洲出土的脈形類化石。
化石證據的分析結果首次證明了牠們的體型增長跟養分有關。所有生物都需要養分才能存活並成長,但養分多寡同時也決定了生物的體型大小和外型,此概念稱為「生態表型可塑性」(ecophenotypic plasticity)Hoyal Cuthill和共同作者Simon Conway Morris教授提出脈形類不僅表現出高度的生態表型可塑性,此能力也讓牠們在劇烈變化的世界中取得大量優勢。舉例來說,如果上方海水氧濃度提高,底下的脈形類可以迅速變形」成修長的錐狀外形。
Hoyal Cuthill表示:「在埃迪卡拉紀時,地球海洋似乎出現了重大變化。這可能刺激了生物生長,使地球上的生物體型突然之間開始變大許多。埃迪卡拉紀的海中出現了什麼樣的重大地球化學變化使得生物體型開始變大,要下確切的結論恐怕還言之過早,但我們認為有幾個強力的候選因素,特別是氧濃度的提高,因為動物需要氧氣來進行呼吸作用。」
海洋化學的重大變化接續在稱作Gaskiers冰期的大規模冰河期之後。當海洋的的養分濃度低落時,生物顯然會讓牠們的體型維持在比較嬌小的狀態。但氧氣或是其他種養分突然(地質上來說)增加時,生物就有機會長到比原本大上許多,即使牠們是基因組成完全一樣的生物。這意味著巨大脈形類的突然出現可能是氣候和海洋化學發生的重大變化造成的直接後果。
然而,雖然脈形類對埃迪卡拉紀的環境適應相當良好,海洋化學仍持續變化。到了54100萬年前的寒武紀大爆發」――在這段演化疾速進行的時期中,大多數主要動物類群首次在化石紀錄中登場――環境已經劇烈改變,使得脈形類走向滅亡,之後再也沒有出現跟牠們十分類似的物種了。

Big, shape-shifting animals from the dawn of time
Major changes in the chemical composition of the world’s oceans enabled the first large organisms – possibly some of the earliest animals – to exist and thrive more than half a billion years ago, marking the point when conditions on Earth changed and animals began to take over the world. 

Why did life on Earth change from small to large when it did? Researchers from the University of Cambridge and the Tokyo Institute of Technology have determined how some of the first large organisms, known as rangeomorphs, were able to grow up to two metres in height, by changing their body size and shape as they extracted nutrients from their surrounding environment.
The results, reported in the journal Nature Ecology and Evolution, could also help explain how life on Earth, which once consisted only of microscopic organisms, changed so that huge organisms like dinosaurs and blue whales could ultimately evolve.
Rangeomorphs were some of the earliest large organisms on Earth, existing during a time when most other forms of life were microscopic in size. Some rangeomorphs were only a few centimetres in height, while others were up to two metres tall.
These organisms were ocean dwellers that lived during the Ediacaran period, between 635 and 541 million years ago. Their soft bodies were made up of branches, each with many smaller side branches, forming a geometric shape known as a fractal, which can be seen today in things like lungs, ferns and snowflakes.
Since rangeomorphs don’t resemble any modern organism, it’s difficult to understand how they fed, grew or reproduced, let alone how they might link with any modern group. However, although they look somewhat like plants, scientists believe that they may have been some of the earliest animals to live on Earth.
“What we wanted to know is why these large organisms appeared at this particular point in Earth’s history,” said Dr Jennifer Hoyal Cuthill of Cambridge’s Department of Earth Sciences and Tokyo Tech’s Earth-Life Science Institute, the paper’s first author. “They show up in the fossil record with a bang, at very large size. We wondered, was this simply a coincidence or a direct result of changes in ocean chemistry?”
The researchers used micro-CT scanning, photographic measurements and mathematical and computer models to examine rangeomorph fossils from south-eastern Newfoundland, Canada, the UK and Australia.
Their analysis shows the earliest evidence for nutrient-dependent growth in the fossil record. All organisms need nutrients to survive and grow, but nutrients can also dictate body size and shape. This is known as ‘ecophenotypic plasticity.’ Hoyal Cuthill and her co-author Professor Simon Conway Morris suggest that rangeomorphs not only show a strong degree of ecophenotypic plasticity, but that this provided a crucial advantage in a dramatically changing world. For example, rangeomorphs could rapidly “shape-shift”, growing into a long, tapered shape if the seawater above them happened to have elevated levels of oxygen.
“During the Ediacaran, there seem to have been major changes in the Earth’s oceans, which may have triggered growth, so that life on Earth suddenly starts getting much bigger,” said Hoyal Cuthill. “It’s probably too early to conclude exactly which geochemical changes in the Ediacaran oceans were responsible for the shift to large body sizes, but there are strong contenders, especially increased oxygen, which animals need for respiration.”
This change in ocean chemistry followed a large-scale ice age known as the Gaskiers glaciation. When nutrient levels in the ocean were low, they appear to have kept body sizes small. But with a geologically sudden increase in oxygen or other nutrients, much larger body sizes become possible, even in organisms with the same genetic makeup. This means that the sudden appearance of rangeomorphs at large size could have been a direct result of major changes in climate and ocean chemistry.
However, while rangeomorphs were highly suited to their Ediacaran environment, conditions in the oceans continued to change and from about 541 million years ago the ‘Cambrian Explosion’ began – a period of rapid evolutionary development when most major animal groups first appeared in the fossil record. When the conditions changed, the rangeomorphs were doomed and nothing quite like them has been seen since.
原始論文:Jennifer F. Hoyal Cuthill, Simon Conway Morris. Nutrient-dependent growth underpinned the Ediacaran transition to large body size. Nature Ecology & Evolution, 2017; DOI: 10.1038/s41559-017-0222-7

引用自:University of Cambridge. "Big, shape-shifting animals from the dawn of time." 

2017年7月14日 星期五

對火山管道系統的最新觀點

原文網址:www.sciencedaily.com/releases/2017/07/170710122935.htm
對火山管道系統的最新觀點
將上升岩漿困在地殼中的「能階反轉」(reverse energy cascade)作用中的一部份,形成了像是優勝美地酋長岩之類的壯觀景色。

2017年7月13日 星期四

海平面下降造成火山溢流

原文網址:https://goo.gl/fDgHBV
海平面下降造成火山溢流
一組國際研究團隊發現了固體地球和氣候系統之間的新關聯

2017年7月12日 星期三

研究發現地球磁場比我們想得還要單純

原文網址:http://oregonstate.edu/ua/ncs/archives/2017/jul/study-finds-earth%E2%80%99s-magnetic-field-%E2%80%98simpler-we-thought%E2%80%99
研究發現地球磁場比我們想得還要單純
科學家找出了在千年尺度下地球磁場的演變模式,而呈現出有關磁場如何作用的新見解,並提供了新的測量方法來預測之前無法得知的磁場變化。

2017年7月10日 星期一

由化石述說的冰層歷史

原文網址:http://www.nature.com/nature/journal/v547/n7661/full/547035a.html
由化石述說的冰層歷史
微體化石顯示10400年前到7500年前,稱作繞極深層水的水團上湧使得南極冰棚崩解。這項發現有助於我們更加瞭解冰層後退的現象。

2017年7月4日 星期二

在史上最大滅絕事件中,魚的體型大小並非存活關鍵

原文網址:http://www.bris.ac.uk/news/2017/june/fish-extinction-.html
在史上最大滅絕事件中,魚的體型大小並非存活關鍵
瞭解現今的生物多樣性和生物面臨的存亡威脅是相當重要的。科學家一般認為在滅絕危機發生時,較大的體型會讓生物的處境變得更加危險。

2017年7月3日 星期一

火山內部的「膨脹」可以用來預測火山噴發

原文網址:http://www.cam.ac.uk/research/news/bulges-in-volcanoes-could-be-used-to-predict-eruptions
火山內部的膨脹可以用來預測火山噴發
劍橋大學的研究團隊發展出新方法來測量火山內部的壓力,並且發現這可以當作未來火山噴發的可靠指標。