顯示具有 重力 標籤的文章。 顯示所有文章
顯示具有 重力 標籤的文章。 顯示所有文章

2019年6月5日 星期三

研究南極羅斯冰棚之下的融化模式得到了驚人發現


研究南極羅斯冰棚之下的融化模式得到了驚人發現
By Marie Denoia Aronsohn
由許多研究機構合作進行的「羅塞塔冰層計畫」(ROSETTA-Ice project),三年來調查了南極的冰層並蒐集各類資料,統整起來對羅斯冰棚得出了全新見解,包括它的結構與變化歷程。今日(5/27)發表於《自然地球科學》(Nature Geoscience)的研究中,羅塞塔冰層計畫的團隊成員詳述他們如何發現過往形成的地質構造限制了海水流動的路徑。這項發現顯示羅斯冰棚未來消融的時候,當地的海流可能會有相當重要的影響。
羅塞塔冰層計畫的一部分是運用IcePod飛過南極羅斯冰棚上方。這個吊艙掛在LC130貨機的下方,其中含有的儀器在羅塞塔冰層計畫中相當重要。照片來源:Winnie Chu

2018年2月14日 星期三

恐龍或許是被接連兩下重擊打倒在地的


恐龍或許是被接連兩下重擊打倒在地的
By Jim Barlow
恐龍到底是被什麼事物消滅的?這項爭議仍然存在。
奧勒岡大學進行的新研究發現6600萬年前沿著深海洋脊發生了跟重力相關的擾動現象,其指出撞擊墨西哥猶加敦半島的巨大隕石可能引發全世界的火山噴出岩漿。這兩次接踵而來的重創或許決定了發生在恐龍身上的噩運。
「我們找到的證據顯示大滅絕事件期間,有段之前未辨識出來的全球火山活動高峰期。」之前在奧勒岡大學就讀博士學位的Joseph Byrnes表示。
這項由Byrnes和奧勒岡大學地球科學系的教授Leif Karlstrom進行的研究於27日刊登於《科學進展》(Science Advances)。這份研究詳細描繪了保存在中洋脊(板塊構造在海底的邊界)的火山活動紀錄,證據則來自於從海床上方測到的重力強度變化。
這項奧勒岡大學的研究由美國國家科學基金會資助。Karlstrom表示研究指出在希克蘇魯伯撞擊事件之後全球火山活動有加劇的現象,包括印度德干高原的噴發量也有所提升。位在印度中西部的德干高原是由一段歷時長久的大型火山噴發事件形成,其噴濺出來的熔岩層層堆積達到數千公尺厚,使德干高原成為地球最大型的火山地貌之一。
在恐龍滅絕的爭論中,德干高原地區曾屢次居於要角又退居幕後。科學家知道如此大規模的罕見火山噴發事件對地球氣候造成的擾動足以釀成重大災難,當它們發生時通常會跟大滅絕事件有所關聯。大型火山噴發事件會噴出大量灰燼和氣體至大氣當中,僅有少數植物能生存下來,進而破壞食物鏈造成動物滅絕。
自從在1980年代發現今日墨西哥的希克蘇魯伯附近曾遭到隕石撞擊的證據之後,科學家就一直在爭論殲滅所有非鳥類恐龍的滅絕事件的罪魁禍首到底是誰――隕石還是德干高原噴發事件。
日趨進步的定年方法顯示德干高原的火山在隕石撞擊之前就已經相當活躍。Karlstrom表示隕石撞擊產生傳遍全球的地震波,或許有助於加速這些噴發事件進行。
「我們的成果顯示這些分布在整個地球,極度稀有且破壞性十足的事件彼此之間互有關連。」Karlstrom表示,「隕石撞擊可能影響了正在進行的火山噴發活動,因而對恐龍造成了接連兩下重創。」
2015年加州大學柏克萊分校的研究人員提出這兩個事件可能有關而加強了此種說法。包括Karlstrom的該團隊認為隕石產生的強力地震波撼動了整個地球,或許能影響遠方的火山活動。
Karlstrom表示就像平常由構造活動產生的地震有時候會讓水井和溪流的流量增加,他們的研究認為震波產生的晃動可以使德干高原下方地函儲存的岩漿釋放出來,而在當地造成最具規模的火山爆發。
奧勒岡大學進行的這項新發現將震波引起噴發的發生範圍從印度拓展至全世界的海盆。
現為明尼蘇達大學博士後研究員的Byrnes從公開取用的資料庫分析全球自由空間重力、海底地形和板塊擴張速率的資料。
在他的分析當中,他以一百萬年為區間來劃分海床年代,建構出的紀錄可以回推至1億年前。他發現大約6600萬年前,自由空間重力的數據出現異常的頻率有所增加,顯示沿著古代洋脊發生的海底岩漿活動此時出現了短暫的高峰期。
自由空間重力異常是指重力加速度的變化量,計算單位是相當微小的毫伽。地球重力比較強的地方會聚集更多海水,運用衛星測量便能偵測到此種變化。Byrnes發現在隕石撞擊過後的首個100萬年之內形成的海床,其自由空間重力發生了520毫伽的異常變化。

A one-two punch may have helped deck the dinosaurs
The debate goes on: What killed off the dinosaurs?
New University of Oregon research has identified gravity-related fluctuations dating to 66 million years ago along deep ocean ridges that point to a “one-two punch” from the big meteor that struck off Mexico’s Yucatan peninsula, possibly triggering a worldwide release of volcanic magma that could have helped seal the dinosaurs' fate.
"We found evidence for a previously unknown period of globally heighted volcanic activity during the mass-extinction event," said former UO doctoral student Joseph Byrnes.
The study by Byrnes and Leif Karlstrom, a professor in the UO’s Department of Earth Sciences, was published Feb. 7 in Science Advances. It details a record of volcanism preserved along the mid-ocean ridges, which mark the oceanic boundaries of tectonic plates. The evidence comes from changes in the strength of gravity above the seafloor.
The findings of the UO's National Science Foundation-supported study, Karlstrom said, point to a pulse of accelerated worldwide volcanic activity that includes enhanced eruptions at India's Deccan Traps after the Chicxulub impact. The Deccan Traps, in west-central India, formed during a period of massive eruptions that poured out layers of molten rock thousands of feet deep, creating one of the largest volcanic features on Earth.
The Deccan Traps region has been in and out of the dinosaur debate. Rare volcanic events at such a scale are known to cause catastrophic disturbances to Earth's climate, and, when they occur, they are often linked to mass extinctions. Huge volcanic events can eject so much ash and gas into the atmosphere that few plants survive, disrupting the food chain and causing animals to go extinct.
Since evidence of the meteor strike near present-day ChicxulubMexico, surfaced in the 1980s, scientists have debated whether the meteor or the Deccan Traps eruptions drove the extinction event that killed off all nonavian dinosaurs.
Progressively improving dating methods indicate that the Deccan Traps volcanoes already were active when the meteor struck. Resulting seismic waves moving through the planet from the meteor strike, Karlstrom said, probably fueled an acceleration of those eruptions.
"Our work suggests a connection between these exceedingly rare and catastrophic events, distributed over the entire planet," Karlstrom said. "The meteorite's impact may have influenced volcanic eruptions that were already going on, making for a one-two punch."
That idea gained strength in 2015 when researchers at the University of California, Berkeley, proposed that the two events might be connected. That team, which included Karlstrom, suggested that the meteorite may have modulated distant volcanism by generating powerful seismic waves that produced shaking worldwide.
Similar to the impacts that normal tectonic earthquakes sometimes have on wells and streams, Karlstrom said, the study proposed that seismic shaking liberated magma stored in the mantle beneath the Deccan Traps and caused the largest eruptions there.
The new findings at the UO extend this eruption-triggering in India to ocean basins worldwide.
Byrnes, now a postdoctoral researcher at the University of Minnesota, analyzed publicly available global data sets on free-air gravity, ocean floor topography and tectonic spreading rates.
In his analyses, he divided the seafloor into 1-million-year-old groupings, constructing a record back to 100 million years ago. At about 66 million years, he found evidence for a "short-lived pulse of marine magmatism" along ancient ocean ridges. This pulse is suggested by a spike in the rate of the occurrence of free-air gravity anomalies seen in the data set.
Free-air gravity anomalies, measured in tiny increments call milligals, account for variations in gravitational acceleration, found from satellite measurements of additional seawater collecting where the Earth's gravity is stronger. Byrnes found changes in free-air gravity anomalies of between five and 20 milligals associated with seafloor created in the first million years after the meteor.
原始論文:Joseph S. Byrnes, Leif Karlstrom. Anomalous K-Pg–aged seafloor attributed to impact-induced mid-ocean ridge magmatismScience Advances, 2018; 4 (2): eaao2994 DOI: 10.1126/sciadv.aao2994
引用自:University of Oregon. "A one-two punch may have helped deck the dinosaurs.”


2017年12月5日 星期二

發現強烈地震初期產生的重力訊號可以用來定出其規模

發現強烈地震初期產生的重力訊號可以用來定出其規模

在地震發生之後地球重力場幾乎立刻就會受到擾動,這種現象被儀器記錄到的時間會早於地震學家經常分析的地震波。在2017121日發表在《科學》(Science)的研究中,由CNRSIPGP和巴黎第七大學的研究人員組成的團隊成功觀測到這種跟重力有關的微弱訊號,並且解釋它們的來源。由於此訊號易受地震規模的影響,因此在快速辨識大地震是否發生時,它們或許能起到相當重要的作用。
想要更加瞭解地震的地震學家跟為了偵測重力波而發展精確重力觀測技術的物理學家合作之下促成了這項研究。地震會劇烈改變地球應力的平衡狀態而產生地震波,造成的後果可能相當具有破壞力。不過同樣的波動也會擾亂地球的重力場而放出不同的訊號。對於想要快速定量震動幅度的研究人員來說,這種訊號令他們相當有興趣,因為它們不像震波的行進速度僅有時速310公里,而是以光速來行進。因此距離震央1000公里遠的地震儀測站,或許有機會能在地震波到達兩分鐘之前就先偵測到此種訊號。
2016年的一篇研究中初次呈現此種訊號,而此篇研究接續下去做出了更加詳細的探討。首先,在距2011年日本地震(規模9.1)震央周圍5003000公里的範圍內,科學家確實從十個左右的地震儀紀錄中觀察到這類訊號。研究人員從此觀察結果接續證明訊號是源自於兩種效應。第一種效應是地震儀所在地點的重力變化會改變儀器質量的平衡分布。第二個效應則是以間接方式影響:由於地球任何一處的重力變化也會擾動原有的應力平衡,因此會產生新的地震波而被地震儀接收到。
研究人員探討上述兩種效應而證明跟重力有關的此類訊號相當容易受到地震規模影響,因此在強烈地震發生時有望利用它們來快速定量地震規模。研究人員未來面臨的挑戰是要想辦法將此種訊號運用在規模小於88.5的地震,因為在低於這個規模時,訊號相對於地球自然產生的地震波噪訊相比過於微弱,而要將兩者分離需要相當複雜的過程。所以研究人員已經開始著眼於數種技術,其中有些靈感源自於用來偵測重力波的儀器,計畫更進一步地對這些十分珍稀的訊號進行測量。

New early gravity signals to quantify the magnitude of strong earthquakes

After an earthquake, there is a disturbance in the field of gravity almost instantaneously. This could be recorded before the seismic waves that seismologists usually analyze. In a study published in Science on December 1, 2017, a team formed of researchers from CNRS, IPGP, the Université Paris Diderot and Caltech has managed to observe these weak signals related to gravity and to understand where they come from. Because they are sensitive to the magnitude of earthquakes, these signals may play an important role in the early identification of the occurrence of a major earthquake.
This work came out of the interaction between seismologists who wanted to better understand earthquakes and physicists who were developing fine gravity measurements with a view to detecting gravitational waves. Earthquakes change the equilibrium of forces on Earth brutally and emit seismic waves whose consequences may be devastating. But these same waves also disturb Earth's field of gravity, which emits a different signal. This is particularly interesting with a view to fast quantification of tremors because it moves at the speed of light, unlike tremor waves, which propagate at speeds between 3 and 10 km/s. So seismometers at a station located 1000 km from the epicenter may potentially detect this signal more than two minutes before the seismic waves arrive.
The work presented here, which follows on a 2016 study which demonstrated this signal for the first time, greatly increases its understanding. First, the scientists did indeed observe these signals on the data from about ten seismometers located between 500 and 3000 km from the epicenter of the 2011 Japanese earthquake (magnitude 9.1). From their observations, the researchers then demonstrated that these signals were due to two effects. The first is the gravity change that occurs at the location of the seismometer, which changes the equilibrium position of the instrument's mass. The second effect, which is indirect, is due to the gravity change everywhere on Earth, which disturbs the equilibrium of the forces and produces new seismic waves that will reach the seismometer.
Taking account of these two effects, the researchers have shown that this gravity-related signal is very sensitive to the earthquake's magnitude, which makes it a good candidate for rapidly quantifying the magnitude of strong earthquakes. The future challenge is to manage to exploit this signal for magnitudes below about 8 to 8.5, because below this threshold, the signal is too weak relative to the seismic noise emitted naturally by Earth, and dissociating it from this noise is complicated. So several technologies, including some inspired from instruments developed to detect gravitational waves, are being envisaged to take a new step forward in detection of these precious signals.
原始論文:Martin Vallée, Jean Paul Ampuero, Kévin Juhel, Pascal Bernard, Jean-Paul Montagner, Matteo Barsuglia. Observations and modeling of the elastogravity signals preceding direct seismic wavesScience, 2017; DOI: 10.1126/science.aao0746

引用自:CNRS. "New early gravity signals to quantify the magnitude of strong earthquakes." ScienceDaily. ScienceDaily, 30 November 2017.