2016年12月22日 星期四

在上次暖化期間南極的升溫幅度是整個地球平均的二到三倍

原文網址:www.sciencedaily.com/releases/2016/12/161206111535.htm

在上次暖化期間南極的升溫幅度是整個地球平均的二到三倍

暖化在極區增幅的現象跟現今氣候模型做出的結果一致

根據一組美國地球物理學家進行的新研究,在20,000年前的末次冰河期高峰之後,南極暖化的幅度是世界溫度平均升高量的二到三倍左右。
南極溫度在20,000年前至10,000年前之間提高了大約攝氏11度,將近華氏20度;然而全世界的平均溫度僅升高了攝氏4度,約為華氏7度。這種不一致突顯出無論是暖化或冷化,在兩極地區(包括北邊的北極與南邊的南極)氣候變遷的效應都會增強。
此計算結果跟大多數氣候模型的預測一致,顯示這些模型在估計過往氣候條件時表現良好。因此,它們很有機會也能準確預測未來氣候變遷與全球暖化時代中的氣候條件會是如何。
「雖然結果並不特別令人驚訝,但當你去檢視用來預測未來全球暖化的氣候模型,對地球20,000年前的樣貌的分析結果時,它們平均而言都能良好重現當時南極地區有多冷。」第一作者Kurt Cuffey說。他是加州大學柏克萊分校的冰河學家,同時也是地理學和行星及地球科學的教授。「這項研究相當值得注意,也證實了我們的確瞭解氣候系統是如何運作。」
這些模型目前預測現今氣候變遷造成的結果中,雖然在數百年內還不會到達最高值,南極的升溫幅度會是地球其餘地方的兩倍之多。假設人類仍依照目前速率排放溫室氣體,則到了2100年,最有可能發生的氣候變遷景象是全球平均溫度會升高攝氏3(華氏5),而預測中南極地區則最終會升高攝氏6(華氏10)左右。
這項新研究首度精確計算了南極地區於冰河期的氣溫,以及從那之後的溫度增加量。Cuffey表示研究結果可以淘汰一些對回饋效應考慮不足,因而無法準確重現極區升溫較多的氣候模型。
Cuffey和共同研究人員,包括任職於美國科羅拉多州萊克伍德的美國地質調查局的Gary Clow,將他們的研究成果刊登於上週《美國科學院院刊》(Proceedings of the National Academy of Sciences)的線上預告版。
南極的冰河消退
這項分析的原理為末次冰河期於20,000年前達到最為寒冷之後全球開始逐漸暖化,此時南極冰河深處的冰的升溫速率會比地表升溫還要慢,就像把一隻冷凍火雞直接送進熾熱的烤爐,就算火雞表面已經到達爐子的溫度,但裡面還是處於凍結的狀態。透過測量冰河深處的餘溫和表層溫度的差距,科學家可以根據純冰的升溫速率來預估深處冰層形成時的溫度。在南極西部的冰層,深處於20,000年前形成的冰比表層低了攝氏1度。
2011年結束的南極西部冰層分冰嶺冰芯計畫,在為期八年的計畫期間有鑽探一座深3.4公里(2英里)的冰芯鑽井。Clow分別在20112014年各測量了一次內部溫度。鑽井最深處的冰堆積於70,000年前;全長距底部六分之一處為50,000年前形成;距表面三分之一處則形成於20,000年前。
Cuffey根據熱在冰塊中的擴散方式,結合古老冰層的同位素測量結果,發展出一種方法可以把這些溫度測量結果合併成一條平滑的溫度曲線。從中可以估計出從上次冰河期的深度開始,溫度已經升高了攝氏11.3度,誤差為正負1.8度。
有趣的是,末次冰盛期之後,南極溫度的提升速率遠高於北極。在15,000年前,南極氣溫已經達到今日的75%,而北極還要再花上3,0004,000年才會暖化至此程度。原因主要是北半球擁有大片冰層可以減緩暖化作用,另外海洋洋流以及地球軌道狀態的變化也加速了南半球暖化。
Cuffey表示隨著全球溫度升高,海洋洋流的變化會造成深海富含二氧化碳的海水上湧,導致全球二氧化碳濃度增加。而南極對於這種變化也更加敏感。
他說現今發生的全球暖化主要是由人類燃燒化石燃料所釋放的二氧化碳促成,這種狀況跟自然循環有所不同。海洋吸收二氧化碳的速度無法跟上大氣溫室氣體攀升的速度,意味著除非人類停止排放二氧化碳,否則二氧化碳含量和全球溫度就不會停止升高。

During last warming period, Antarctica heated up two to three times more than planet average

Amplification of warming at poles consistent with today's climate change models

Following Earth's last ice age, which peaked 20,000 years ago, the Antarctic warmed between two and three times the average temperature increase worldwide, according to a new study by a team of American geophysicists.
The disparity -- Antarctica warmed about 11 degrees Celsius, nearly 20 degrees Fahrenheit, between about 20,000 and 10,000 years ago, while the average temperature worldwide rose only about 4 degrees Celsius, or 7 degrees Fahrenheit -- highlights the fact that the poles, both the Arctic in the north and the Antarctic in the south, amplify the effects of a changing climate, whether it gets warmer or cooler.
The calculations are in line with estimates from most climate models, proving that these models do a good job of estimating past climatic conditions and, very likely, future conditions in an era of climate change and global warming.
"The result is not a surprise, but if you look at the global climate models that have been used to analyze what the planet looked like 20,000 years ago -- the same models used to predict global warming in the future -- they are doing, on average, a very good job reproducing how cold it was in Antarctica," said first author Kurt Cuffey, a glaciologist at the University of California, Berkeley, and professor of geography and of earth and planetary sciences. "That is noteworthy and a confirmation that we know how the system works."
These models currently predict that as a result of today's global climate change, Antarctica will warm twice as much as the rest of the planet, though it won't reach its peak for a couple of hundred years. While the most likely climate change scenario, given business-as-usual greenhouse gas emissions, is a global average increase of 3 degrees Celsius (5 degrees Fahrenheit) by 2100, the Antarctic is predicted to warm eventually by around 6 degrees Celsius (10 degrees Fahrenheit).
The new results, which are the first good calculation of Antarctica's ice age temperature and the amount of warming since, do rule out a couple of climate models that do not include enough feedback to accurately reproduce the amplified temperature in the polar regions, Cuffey said.
Cuffey and his colleagues, including Gary Clow of the U.S. Geological Survey in Lakewood, Colorado, published their results online last week in the early edition of the Proceedings of the National Academy of Sciences.
Deglaciation in Antarctica
The analysis is based on the fact that as the world warmed following the coldest part of the last ice age 20,000 years ago, the ice deep inside the Antarctic glaciers warmed more slowly than Earth's surface, just as a frozen turkey put into a hot oven will still be cold inside even after the surface has reached oven temperature. By measuring the remaining difference -- the 20,000-year old ice deep in the West Antarctic ice sheet is about 1 degree Celsius cooler than the surface -- the scientists were able to estimate the original temperature based on how fast pure ice warms up.
Clow measured twice, once in 2011 and again in 2014, the temperature in a 3.4-kilometer-deep (2-mile-deep) borehole from which the West Antarctic Sheet Divide ice core had been drilled during an eight-year project that ended in 2011. Ice at the bottom of the borehole was deposited about 70,000 years ago; ice about one-sixth of the way up about 50,000 years ago; and ice about one-third of the way to the surface 20,000 years ago.
Cuffey developed a technique to combine these temperature measurements, which are smoothed as a result of heat diffusion in the ice, with isotopic measurements of old ice to come up with an estimated temperature of 11.3 degrees, plus or minus 1.8 degrees Celsius, warming since the depths of the ice age.
Interestingly, the Antarctic temperature increased much more rapidly than did Arctic temperatures after the glacial maximum. By 15,000 years ago, Antarctica had warmed to about 75 percent of its temperature today. The Arctic took another 3,000-4,000 years to warm this much, primarily because of the fact that the Northern Hemisphere had huge ice sheets to buffer warming, and the fact that changes in ocean currents and Earth's orbital configuration accelerated warming in the south.
Antarctica was also more sensitive to global carbon dioxide levels, Cuffey said, which increased as the global temperature increased because of changing ocean currents that caused upwelling of carbon-dioxide-rich waters from the depths of the ocean.
The situation today, with global warming driven primarily by human emissions of carbon dioxide from burning fossil fuels, is different from natural cycles, he said. The ability of the oceans to take up carbon dioxide cannot keep up with the rising levels of greenhouse gases in the atmosphere, which means carbon dioxide and global temperatures will continue to increase unless humans cut their carbon dioxide emissions.
原始論文:Kurt M. Cuffey, Gary D. Clow, Eric J. Steig, Christo Buizert, T. J. Fudge, Michelle Koutnik, Edwin D. Waddington, Richard B. Alley, Jeffrey P. Severinghaus. Deglacial temperature history of West Antarctica. Proceedings of the National Academy of Sciences, 2016; 201609132 DOI:10.1073/pnas.1609132113

引用自:University of California - Berkeley. "During last warming period, Antarctica heated up two to three times more than planet average: Amplification of warming at poles consistent with today's climate change models." ScienceDaily. ScienceDaily, 6 December 2016. 

2016年12月20日 星期二

界定人類世時要讓更多社會科學學者參與其中

原文網址http://www.nature.com/news/involve-social-scientists-in-defining-the-anthropocene-1.21090
界定人類世時要讓更多社會科學學者參與其中
地球時代的交替是由人類和社會引起,Erle Ellis及其同僚寫道,因此在正名(人類世)時必須讓更多這些領域的學者參與其中。
大約有30多名的學者正準備改寫地球的歷史。國際地層委員會(International Commission on Stratigraphy)之下的人類世工作小組(Anthropocene Working Group,作者之一Erle Ellis為其中一名成員)於八月公開發表在接下來的三年期間,他們將會把地球歷史分成兩部分:其一是人類已成為最強地質作用力之一的時期,稱作人類世(Anthropocene);另一部分則涵蓋了人類對地球運作造成重大影響之前的所有時間。
要將兩者分界定在何處則是一項爭議十足的議題。討論結果是用一個或多個「金色之釘」(golden spikes)來精準定出分界:目前是利用自20世紀中葉起發明的科技,其產物留存在全球岩石紀錄中的明顯訊號,從放射性核種至塑膠皆在此列。之後國際地質科學研討會審核人類世的正名與否時,這類標記會被提出來作為重要依據。
我們同意人類應該正式承認自身對地球的影響,但是人類世的正名不應太過倉促。而我們也質疑1950年代標記的優先地位,因其忽略了人類在過去數千年間,從人類開始用火以至於農業的興起所造成的影響。更重要的是,這些標記完全沒有呈現出人類對地球的改變是漸進式的本質。他們灌輸了一種歐洲本位、菁英主義及專家政治的敘述方式,呈現出來的是人與環境處於互相敵對的立場,這跟現今社會科學及人文科學的思潮是互相違背的。
數十年以來對人類長期重塑地球系統的整體歷史、背後原因和造成結果所進行的嚴謹科學研究卻在小組討論結果中隻字未提。在定義一段以人類為主軸的地質時期時,怎麼能完全沒有提到社會活動、都市化、殖民、貿易網絡、生態工程以及能源從生質轉變成化石燃料等現象的演變過程?
我們要求重新建立一個更加嚴謹、透明、公開且永續經營的組織來主導人類世的正名過程,在這之中人文科學必須佔有一席之地。
更加深遠的過程
人類世並非在一天之內造成,於各地的形成過程也不一致:記下人類如何改變地球的物質紀錄可謂相當深厚且包羅萬象。它們的內容強調出社會、文化和科技發展在不同時空疆域上的巨大差異。
過去10,000年以來,人類活動造成許多生物步入滅絕,也重新分配了全球野生及經馴化後的植物、動物甚至微生物的活動範圍。開墾改變了侵蝕作用的運作模式,也讓土壤蘊含的溫室氣體排放至大氣當中。人類創造出各式各樣的物質,例如陶瓷、磚塊和混凝土,同時還有汙染物。阡陌縱橫的廣大運河、水庫和灌溉系統像是柬埔寨吳哥窟寺廟群中建立的改變了當地地景以及生態系。
10,000年前開始,許多地方於不同時間點各自發展出農業,並在地球陸地的大部分區域留下了許多無可抹滅的紀錄。雖然目前尚未有人知曉塑膠的命運會是如何,但農業的化石紀錄已經完整記載於古代花粉、種子、寄生蟲、骨骸以及木炭與土壤沉積物當中。而宏偉的灌溉網路也可以從空中或太空追溯其脈絡。
地球科學很久以前便已經放棄藉由精確界定地層分界來得到連續性變化的紀錄。他們改以同位素「代用指標」(proxies)來追溯全球溫度、冰層體積以及大氣氣體成分的起伏漲落。地球系統模型將大氣碳含量、海平面、海水同位素和海洋沉積物等面向中的緩慢改變連結在一起。類似地,農業、貿易、工業化等人類活動也是全球各地形成時間並不一致的漸變過程。
要瞭解人類系統(human system)必需奠基於各種形式的紀錄(包括考古、歷史和古生態),並以各方觀點(比如:政治生態學、政治經濟學、歷史生態學、文化演變和環境倫理)來建立起一個龐大的學術體系。舉例而言,了解全球氣候變遷時,我們需要知道社會和文化過程如何促使人們開墾農業用地,並造成土壤與大氣之間的溫室氣體、水氣和能量產生交換。這些過程從農業土地管理的實施,到人口結構轉移、土地掠奪和社會衝突皆涵蓋在內。
雖然人類世工作小組曾經提出一些年代較久遠的人為訊號,像是人類首度開始冶金造成的汙染,但它們都很少被接受進一步的考慮,因為這些紀錄的顯著程度、形成時間和發現地點皆十分多變。取而代之的是,小組幾乎完全倚重於能指出全球同時發生某種事件的地質沉積物。就我們來看原因顯而易見。雖然小組成員的確包括了自然科學領域以外的人員(像是一名新聞工作者、一名律師及數名科學史學家),但37位成員當中僅有三位是研究長期社會變化的社會科學家(兩位考古學家及一位歷史學家)
囊括更多意見
人類世的正名過程必須更加透明,並納入更多方面的意見以及評估。評鑑新紀元科學意義的標準需要公開發表且接受同儕審查,而非只是在私人會議中頷首通過即可。這需要一個公開網路平台,可以容納來自各領域的提議和研究論文,同時能讓他人對這些意見提出回饋並討論。聯合國政府間氣候變化專門委員會、英國皇家學會和美國國家科學基金會出版的評估報告可以作為參考。
我們應當成立一個致力於統籌這件事務的科學機構,或許可以命名為國際人類世委員會(International Anthropocene Commission)。它可以在國際地質委員會、未來地球計畫(Future Earth,一項氣候變遷的10年國際研究計劃)和聯合國的資助之下成立。成員中的半數必須從人類學、考古學、歷史學、社會學、地理學、古生態學、經濟學和哲學領域中遴選而出。且該機構所做的任何決議應當要有一套正式流程。
定義一個以人類為主軸的新時代絕非一蹴可幾。這需要由各個領域的專家學者以應有的嚴肅態度認真看待。


 Involve social scientists in defining the Anthropocene
The causes of Earth's transition are human and social, write Erle Ellis and colleagues, so scholars from those disciplines must be included in its formalization.
Three dozen academics are planning to rewrite Earth's history. The Anthropocene Working Group of the International Commission on Stratigraphy (of which one of us, E.E., is a member) announced in August that over the next three years it will divide Earth's story into two parts: one in which humans are a geological superpower — an epoch called the Anthropocene — and the other encompassing all that came before our species had a major influence on Earth's functioning1.
Where to put the transition is being debated. Discussions have narrowed to defining one or more 'golden spikes': sharp global signatures in the rock record derived from the introduction of mid-twentieth century technologies, from radionuclides to plastics. Such markers will be put forward as the basis for ratifying the epoch by the International Geological Congress.
We agree that human influences on the planet should be recognized — but the formalization of the Anthropocene should not be rushed. And we question the privileging of 1950s-era markers. This ignores millennia of previous human influences, from our use of fire to the emergence of agriculture2–6. Moreover, these markers misrepresent the continuous nature of human changes to our planet. They instil a Eurocentric, elite and technocratic narrative of human engagement with our environment that is out of sync with contemporary thought in the social sciences and the humanities3, 7–9.
Decades of rigorous scientific research into the history, causes and consequences of the long-term reshaping of Earth systems by humans is being ignored in the group's discussions. How can a human-centred geological period be defined without characterizing the development of societies, urbanization, colonization, trading networks, ecosystem engineering and energy transitions from biomass to fossil fuels?
We call for the Anthropocene formalization process to be rebuilt on a rigorous, transparent, open and sustainable foundation in which the human sciences have a major role.
Deeper and thicker
The Anthropocene was not made in a day, nor was it created uniformly: the material records of human alterations of Earth are thick, deep and heterogeneous. They highlight huge social, cultural and technological differences across time and space7, 8.
Human activities over the past 10,000 years have caused extinctions and global changes in the distribution of wild and domesticated plants, animals and microflora. Land clearance has altered patterns of erosion and released greenhouse gases into the atmosphere. Humans have created materials such as ceramics, brick and concrete as well as pollutants. Vast networks of canals, reservoirs and irrigation — such as those associated with the Angkor Wat temple complex in Cambodia — have shaped lands and ecologies2–4, 6, 10.
Agriculture, which emerged in more than a dozen places at different times starting more than 10,000 years ago, has left a vast and indelible record across most of Earth's continents. Although no one yet knows the fate of plastics, the fossil record of agriculture is well documented in ancient pollen, seeds, parasites, bones, deposits of charcoal and soils. Giant irrigation networks can be traced from the air or space.
Earth sciences long ago moved away from defining precise stratigraphic boundaries to developing records of continuous change4. Isotope 'proxies' trace the rise and fall of global temperatures, ice volumes and atmospheric gases. Earth-systems models link together slow shifts in atmospheric carbon, sea levels and isotopes in seawater and marine deposits. Likewise, agriculture, trade and industrialization are gradual processes that emerged at different times across Earth (see 'The deep roots of the Anthropocene').
Understanding 'human systems' requires engaging a vast body of scholarship based on a diverse array of records (including archaeological, historical and palaeoecological) and perspectives (from political ecology, political economy, historical ecology, cultural evolution and environmental ethics, for instance). Understanding changes in global climate, for example, requires knowing how social and cultural processes drive the clearance of agricultural land and exchanges of atmospheric greenhouse gases, moisture and energy. These processes range from the practices of agricultural land management to demographic shifts, land grabbing and societal conflict.
The Anthropocene Working Group has thrown in a few deeper anthropogenic signals, such as pollution caused by the first production of metals. But these have hardly been considered because the records vary in extent, timing and geographical availability. Instead, the group has focused almost exclusively on geological deposits that pinpoint one event simultaneously around the world. The reason seems clear to us. Although the group does include members outside the natural sciences (such as a journalist, a lawyer and historians of science) only 3 of the 37 members are social scientists who study long-term social change (two archaeologists and one historian).
More inclusive
The formalization of the Anthropocene must be more transparent and have wider input and assessment. The criteria for assessing the sciences of the new epoch need to be published and peer reviewed, rather than agreed in private meetings. An open online platform could host the full range of proposals and research papers as well as feedback and discussion. The Intergovernmental Panel on Climate Change and the UK Royal Society and US National Science Foundation Assessment Reports serve as models.
A dedicated scientific institution, perhaps called the International Anthropocene Commission, should coordinate this. It could be set up and funded under the auspices of the International Geological Congress, Future Earth (a ten-year international research initiative on global change) and the United Nations. Half of its members should be drawn from anthropology, archaeology, history, sociology, geography, palaeoecology, economics and philosophy. It should have a formal procedure for inclusion.
Defining a human-centred epoch will take time. It should be treated by scholars from all disciplines with the seriousness it deserves.
原始文章:Nature 540, 192–193 (08 December 2016) doi:10.1038/540192a


2016年12月13日 星期二

發現出露於地表的斷層中最大者

原文網址:www.sciencedaily.com/releases/2016/11/161128132928.htm

發現出露於地表的斷層中最大者

地質學家首度能觀察並描述印尼東部的班達滑脫斷層(Banda Detachment fault),並研究它的形成過程。
來自澳洲國立大學的研究第一作者Jonathan Pownall博士表示,這項發現有助於研究人員預測此區將來受到海嘯侵襲的風險高低。此區為火環(Ring of Fire)的一部分,也就是太平洋海盆周遭為人所知地震與火山爆發頻繁發生的地區。
「人們知道這處深淵的存在已有90年之久,但直到現在才有人可以解釋它的深度為何如此驚人。」Pownall博士說。
「我們的研究發現印尼東岸班達海下方7公里深的深淵形成原因,是海底沿著可能為地球上出露於地表的最大已知斷層面伸張而造成。」
國立澳洲大學和倫敦大學哈洛威學院的地質學家分析了班達海床的高解析度海底地形圖,發現位於海床的岩石被數百條互相平行的切痕劃開。
這些傷口顯示必定有塊比塔斯馬尼亞或比利時還大的地殼片段,沿著一道低角度的破裂面,也就是滑脫斷層(detachment fault)伸張了120公里而撕裂成現今所見的海底低地。
Pownall博士表示這條班達滑脫斷層出露在海床上的裂痕超過了60,000平方公里。
「這項發現有助於解釋地球海洋最深的區域之一何以達到如此驚人的深度。」他說。
同樣來自國立澳洲大學地球科學研究院的Gordon Lister教授表示,這是班達斷層首度能被研究人員觀察並且做出詳細紀錄。
「我們根據海底地形資料以及對此區域地質的相關知識,為這條斷層的存在做出詳細論述並命名為班達滑脫斷層。」Lister教授說。
Pownall博士表示在七月於印尼東部的航行中,他注意到此處特別顯著的地形跟地殼沿著斷層線伸張時會出現的地形之間彼此相符。
「我很震驚可以親眼見到我們假說中的斷層面,這次不是在電腦螢幕上,而是直接從海上探測出來。」Pownall博士說。
他說緊鄰斷層底部的岩石包含了源自於下方地函的岩石。
「這意味著必然發生了程度極大的拉張作用,使得海洋地殼變薄,在某些地方甚至被完全拉斷。」他說。
Pownall博士表示班達滑脫斷層的發現有助於科學家評估未來發生海嘯和地震的風險。
「班達滑脫斷層這類大型斷層滑移時會造成大地震。在海嘯發生風險極高的區域,對這些大型斷層有更深的認識是評估區域構造災害時的重要基礎。」他說。
Biggest exposed fault on Earth discovered
Geologists have for the first time seen and documented the Banda Detachment fault in eastern Indonesia and worked out how it formed.
Lead researcher Dr Jonathan Pownall from The Australian National University (ANU) said the find will help researchers assess dangers of future tsunamis in the area, which is part of the Ring of Fire -- an area around the Pacific Ocean basin known for earthquakes and volcanic eruptions.
"The abyss has been known for 90 years but until now no one has been able to explain how it got so deep," Dr Pownall said.
"Our research found that a 7 km-deep abyss beneath the Banda Sea off eastern Indonesia was formed by extension along what might be Earth's largest-identified exposed fault plane."
By analysing high-resolution maps of the Banda Sea floor, geologists from ANU and Royal Holloway University of London found the rocks flooring the seas are cut by hundreds of straight parallel scars.
These wounds show that a piece of crust bigger than Belgium or Tasmania must have been ripped apart by 120 km of extension along a low-angle crack, or detachment fault, to form the present-day ocean-floor depression.
Dr Pownall said this fault, the Banda Detachment, represents a rip in the ocean floor exposed over 60,000 square kilometres.
The discovery will help explain how one of Earth's deepest sea areas became so deep," he said.
Professor Gordon Lister also from the ANU Research School of Earth Sciences said this was the first time the fault has been seen and documented by researchers.
"We had made a good argument for the existence of this fault we named the Banda Detachment based on the bathymetry data and on knowledge of the regional geology," said Professor Lister.
Dr Pownall said he was on a boat journey in eastern Indonesia in July when he noticed the prominent landforms consistent with surface extensions of the fault line.
"I was stunned to see the hypothesised fault plane, this time not on a computer screen, but poking above the waves," said Dr Pownall.
He said rocks immediately below the fault include those brought up from the mantle.
"This demonstrates the extreme amount of extension that must have taken place as the oceanic crust was thinned, in some places to zero," he said.
Dr Pownall also said the discovery of the Banda Detachment fault would help assesses dangers of future tsunamis and earthquakes.
"In a region of extreme tsunami risk, knowledge of major faults such as the Banda Detachment, which could make big earthquakes when they slip, is fundamental to being able to properly assess tectonic hazards," he said.
原始論文:Jonathan M. Pownall, Robert Hall, Gordon S. Lister. Rolling open Earth’s deepest forearc basinGeology, 2016; 44 (11): 947 DOI: 10.1130/G38051.1

引用自:Australian National University. "Biggest exposed fault on Earth discovered." ScienceDaily. ScienceDaily, 28 November 2016.