2019年1月9日 星期三

太平洋的長遠記憶


原文網址:http://www.whoi.edu/news-release/the-long-memory-of-the-pacific-ocean 

太平洋的長遠記憶
歷史上的寒冷時期仍在太平洋深處上演
海洋有著超群的記憶力:太平洋深處的海水上次見到陽光的時候,神聖羅馬帝國的皇帝為查理曼大帝、中國由宋朝統治,而牛津大學才剛開辦第一門課程。在912世紀的那段時間,地球的氣候整體而言較為溫暖;接著在16世紀左右,地球進入了較為寒冷的小冰期。如今海洋表面的溫度又再次升高,但海洋深處知道現在的狀況嗎?
伍茲霍爾海洋研究所和哈佛大學的研究人員,發現太平洋深處的海水在溫度變化方面慢了好幾個世紀,還在適應小冰期的開端。雖然現在大部分的海洋都隨著氣候暖化而改變,太平洋深處卻可能會越來越冷。
WHOI的海洋物理學家Jake Gebbie表示:「這些相當古老的海水長久以來都沒有回到海洋表層附近,使得它們的記憶仍然停留在數百年前,當時歐洲歷經了史上最冷的幾個冬天。」以他為主要作者的這篇研究2019.1.4發表在期刊《科學》(Science)
研究共同作者,哈佛大學地球與行星科學系的教授Peter Huybers補充:氣候的變遷可以跨越各種時空尺度。某些區域性的暖化與冷化模式相當有名,像是小冰期和中世紀暖期。我們的目標是發展出一套模型,用來了解海洋內部的性質如何回應地表氣候的變化。
模擬出來的結果讓他們大為驚訝。
Gebbie表示:「如果過去一千年來,海洋表面大部分的溫度整體來說是降低的,則海裡最不受當今暖化影響的部分可能仍在降溫。」
當然,這個模型不過是真實海洋的簡化版本。為了證實這項預測,GebbieHuybers比較了模型呈現的冷化趨勢以及海洋溫度的實際測量結果,包括了1870年代「挑戰者號」船上科學家的測量結果,以及1990年代世界海洋環流實驗做出的近期觀測。
挑戰者號是艘英國的木製三桅帆船,原本的設計是當作軍艦,之後卻成為第一艘用來進行現代科學考察的船隻,探索了全世界的海洋和海床。在1872年至1876年的航次期間,船上人員把溫度計下放至海洋深處,並在航海日誌中記下了超過5000筆的溫度測量結果。
Huybers說:「我們把這些歷史數據中的異常值給篩選掉,並仔細考慮許多方法來修正壓力對溫度計的影響,以及下放溫度計時麻繩拉伸造成的深度錯估。」
研究人員接著比較挑戰者號的數據和近代的觀測結果,發現全世界海洋的溫度大部分都升高了。這和預期中的相符,因為20世紀整個地球都在暖化;不過,在太平洋深處大約2公里的地方,溫度卻正在下降。
Gebbie表示:「模型預測結果跟觀測到的趨勢之間有很高的一致性,使我們很有信心地確定此現象是真實存在的。」
這項發現暗示了在現代的全球暖化開始之前的地表氣候變化,仍會影響到目前的氣候暖化程度。之前預估地球在上個世紀吸收多少熱量的時候,會先假設工業革命開始的時候海洋處於熱平衡的狀態。但是GebbieHuybers預計太平洋深處的冷化趨勢,使得20世紀海洋吸收的熱量必須要重新下修大約30%
要讓海洋跟擁有更多溫室氣體的大氣達到平衡所需的熱量,有一部份似乎早就存在於太平洋深處。Huybers表示,「這項發現使我們有更大的動機瞭解中世紀暖期和小冰期的成因,進而對現在的暖化趨勢有更多瞭解。」

The long memory of the Pacific Ocean
Historical cooling periods are still playing out in the deep Pacific
The ocean has a long memory. When the water in today’s deep Pacific Ocean last saw sunlight, Charlemagne was the Holy Roman Emperor, the Song Dynasty ruled China and Oxford University had just held its very first class. During that time, between the 9th and 12th centuries, the earth’s climate was generally warmer before the cold of the Little Ice Age settled in around the 16th century. Now ocean surface temperatures are back on the rise but the question is, do the deepest parts of the ocean know that?
Researchers from the Woods Hole Oceanographic Institution (WHOI) and Harvard University have found that the deep Pacific Ocean lags a few centuries behind in terms of temperature and is still adjusting to the entry into the Little Ice Age. Whereas most of the ocean is responding to modern warming, the deep Pacific may be cooling.
“These waters are so old and haven’t been near the surface in so long, they still ‘remember’ what was going on hundreds of years ago when Europe experienced some of its coldest winters in history,” said Jake Gebbie, a physical oceanographer at WHOI and lead author of the study published Jan. 4, 2019, in the journal Science.
"Climate varies across all timescales,” adds Peter Huybers, Professor of Earth and Planetary Sciences at Harvard University and co-author of the paper. “Some regional warming and cooling patterns, like the Little Ice Age and the Medieval Warm Period, are well known. Our goal was to develop a model of how the interior properties of the ocean respond to changes in surface climate.”
What that model showed was surprising.
“If the surface ocean was generally cooling for the better part of the last millennium, those parts of the ocean most isolated from modern warming may still be cooling,” said Gebbie.
The model is, of course, a simplification of the actual ocean. To test the prediction, Gebbie and Huybers compared the cooling trend found in the model to ocean temperature measurements taken by scientists aboard the HMS Challenger in the 1870s and modern observations from the World Ocean Circulation Experiment of the 1990s.
The HMS Challenger, a three-masted wooden sailing ship originally designed as a British warship, was used for the first modern scientific expedition to explore the world’s ocean and seafloor. During the expedition from 1872 to 1876, thermometers were lowered into the ocean depths and more than 5,000 temperature measurements were logged.
“We screened this historical data for outliers and considered a variety of corrections associated with pressure effects on the thermometer and stretching of the hemp rope used for lowering thermometers,” said Huybers.
The researchers then compared the HMS Challenger data to the modern observations and found warming in most parts of the global ocean, as would be expected due to the warming planet over the 20th Century, but cooling in the deep Pacific at a depth of around two kilometers.
“The close correspondence between the predictions and observed trends gave us confidence that this is a real phenomenon,” said Gebbie.
These findings imply that variations in surface climate that predate the onset of modern warming still influence how much the climate is heating up today. Previous estimates of how much heat the Earth had absorbed during the last century assumed an ocean that started out in equilibrium at the beginning of the Industrial Revolution. But Gebbie and Huybers estimate that the deep Pacific cooling trend leads to a downward revision of heat absorbed over the 20th century by about 30 percent.
"Part of the heat needed to bring the ocean into equilibrium with an atmosphere having more greenhouse gases was apparently already present in the deep Pacific,” said Huybers. "These findings increase the impetus for understanding the causes of the Medieval Warm Period and Little Ice Age as a way for better understanding modern warming trends."
1.    原始論文:G. Gebbie, P. Huybers. The Little Ice Age and 20th-century deep Pacific coolingScience, 2019; 363 (6422): 70 DOI: 10.1126/science.aar8413
引用自:Woods Hole Oceanographic Institution. "The long memory of the Pacific Ocean."

2018年12月27日 星期四

有機食物對氣候傷害更大


有機食物對氣候傷害更大
包括瑞典查爾姆斯理工大學的國際研究團隊,在發表於期刊《自然》(Nature)的新研究中,發現有機耕作的食物對氣候的衝擊比慣行耕作的食物還大,原因為有機耕作需要更多的土地。
有機耕作每公頃產出的作物比較少,間接造成森林砍伐而釋放出更多二氧化碳。

2018年12月24日 星期一

化石指出花朵的起源時間比過去認為的還要早5000萬年


原文網址:https://elifesciences.org/for-the-press/23106e89/fossils-suggest-flowers-originated-50-million-years-earlier-than-thought
化石指出花朵的起源時間比過去認為的還要早5000萬年
在發表於開放取用期刊《eLife》的新研究中,科學家描述的一種植物化石顯示17400萬年以前的侏儸紀早期就已經有花朵盛開。
含有南京花(Nanjinganthus)化石的粉砂岩石板。圖片來源:中國科學院南京地質古生物研究所

2018年12月20日 星期四

研究人員對全球氣候最近一次的長期變化原因有了新的瞭解


研究人員對全球氣候最近一次的長期變化原因有了新的瞭解
全球氣候最近一次的長期變化大約發生在一百萬年前。追查背後原因的研究得出了全新且不同於以往的發現。
由艾希特大學Sev Kender博士領導的研究團隊,對於「中更新世轉型期」(Mid-Pleistocene Transition ,MPT)的原因有了引人注目的新觀點。地球因為MPT這個現象使得極為寒冷的氣候條件的循環時間變得更加漫長,強度也更加劇烈。
雖然科學家尚未完全瞭解MPT的成因,不過最主流的理論之一認為可能是冰河造成二氧化碳的排放量降低所導致。
Kender博士和他的團隊最近發現這段期間白令海峽因為冰河擴張而關閉,可能導致北大西洋出現分層現象,使得大氣中的二氧化碳減少。他們認為這造成了全球冷化。
團隊相信這項最新發現不只對MPT的成因提供了關鍵知識,也讓我們對於全球氣候變遷背後的驅動因素有了嶄新的觀點。
研究於20181219日刊登在《自然通訊》(Nature Communications )
Kender博士是這篇研究的共同作者,目前任職於康瓦爾郡艾希特大學彭林校區的坎伯恩礦業學院。他說:「副極地的北大西洋擁有地球上某些年代最久的海水。這些海水跟大氣隔離了相當久的時間,使得深部可以累積溶解態的二氧化碳到很高的濃度。當它們往上湧至表層,一部份的二氧化碳就會釋放出來。這種機制在地質時間中是相當重要的作用,在過去的冰河期發生之後它可以造成某種程度的全球暖化。」
我們從白令海峽的深部海底取出沉積物岩芯,並從中得到此區的歷史文獻。研究岩芯沉積物和有孔蟲(一種海洋原生生物)殼體化石的化學性質,我們可以重建浮游生物的生產力,以及海洋表層和底層水體的性質。此外,我們也可以對沉積物進行更佳的定年,如此一來就可以比較白令海和全球其他區域當時出現的變化。
「我們發現在MPT時白令海區域的分層現象變得更加劇烈。中層水體的擴張大幅抑制了導致全球暖化的重要因子之一:北大西洋的副極地湧升流。」
地球氣候一直以來都有劇烈的變化發生。在過去60萬年以來和更早之前的許多時期,氣候經常在類似現今的暖期以及氣溫較低的冰河期之間來回動盪。冰河期時大片的陸地會覆蓋在數公里厚的冰層之下。
地球氣候在自然條件下的規律變化受控於地球繞日軌道的變化,以及地球跟其他星體彼此間的重力作用對自轉軸造成的變化。
這些稱為軌道循環的變化影響了太陽能如何分配至地球的各個角落。結果可能會讓某些循環中北半球的夏季氣溫變低而催生冰河期;但在之後的循環夏季氣溫可能會升高使得冰層融化。
軌道循環會受到許多因素影響而放大它們的效應。其中之一便是大氣中的二氧化碳濃度。
由於MPT發生時軌道循環的特性沒有出現明顯變化,因此科學家長久以來都在試著找出MPT發生的原因為何。
為了進行這項研究,Kender博士和他的團隊聯合國際海洋發現計畫在白令海鑽取深海沉積物,接著測量其中的殼體化石與沉積物的化學性質。
團隊藉此重建出海洋水體隨著時間的詳細變化。他們發現在冰河期這段期間,白令海峽關閉造成副極地北大西洋海水的分層現象變得更加明顯。
他們主張分層現象減少了大氣中的二氧化碳,進而造成全球冷化。
Kender博士進一步解釋:「今日海水結冰所形成的低溫海水大多會通過白令海峽,往北流入北極海。大約一百萬年前因為冰河擴張、海平面下降,造成白令海峽關閉而把低溫海水留在白令海。低溫水體的範圍擴大可能堵住了富含二氧化碳的深層水體形成湧升流,使海洋可以封存更多大氣中的二氧化碳。連帶產生的冷化效應也許使地球對軌道循環更加敏感,造成自此之後的氣候特徵具有更為寒冷且為時更長的冰河期。」
「我們的發現強調出瞭解高緯度海洋現在與未來的變化是相當重要的,因為長期來看這些區域對於大氣中的二氧化碳封存或排放具有相當的重要性。」

Research sheds new light on what drove last, long-term global climate shift
The quest to discover what drove the last, long-term global climate shift on Earth, which took place around a million years ago, has taken a new, revealing twist.
A team of researchers led by Dr Sev Kender from the University of Exeter, have found a fascinating new insight into the causes of the Mid-Pleistocene Transition (MPT) - the phenomenon whereby the planet experienced longer, intensified cycles of extreme cold conditions.
While the causes of the MPT are not fully known, one of the most prominent theories suggests it may have been driven by reductions in glacial CO2 emissions.
Now, Dr Kender and his team have discovered that the closure of the Bering Strait during this period due to glaciation could have led the North Pacific to become stratified – or divided into distinct layers – causing CO2 to be removed from the atmosphere. This would, they suggest, have caused global cooling.
The team believe the latest discovery could provide a pivotal new understanding of how the MPT occurred, but also give a fresh insight into the driving factors behind global climate changes.
The research is published in Nature Communications on December 19th 2018.
Dr Kender, a co-author on the study from the Camborne School of Mines, based at the University of Exeter’s Penryn Campus in Cornwall said: ”The subarctic North Pacific is composed of some of the oldest water on Earth, which has been separated from the atmosphere for such a long time that a high concentration of dissolved CO2 has built up at depth. When this water upwells to the surface, some of the CO2 is released. This is thought to be an important process in geological time, causing some of the global warming that followed past glaciations.
“We took deep sediment cores from the bottom of the Bering Sea that gave us an archive of the history of the region. By studying the chemistry of sediment and fossil shells from marine protists called foraminifera, we reconstructed plankton productivity, and surface and bottom water masses. We were also able to better date the sediments so that we could compare changes in the Bering Sea to other global changes at that time.
“We discovered that the Bering Sea region became more stratified during the MPT with an expanded intermediate-depth watermass, such that one of the important contributors to global warming – the upwelling of the subarctic North Pacific – was effectively curtailed.”
The Earth’s climate has always been subjected to significant changes, and over the past 600,000 years and more it has commonly oscillated between warm periods, similar today, and colder, ‘glacial’ periods when large swathes of continents are blanketed under several kilometres of ice.
These regular, natural changes in the Earth’s climate are governed by changes in how the Earth orbits around the sun, and variations in the tilt of its axis caused by gravitational interactions with other planets.
These changes, known as orbital cycles, can affect how solar energy is dispersed across the planet. Some orbital cycles can, therefore, lead to colder summers in the Northern Hemisphere which can trigger the start of glaciations, while later cycles can bring warmer summers, causing the ice to melt.,
These cycles can be influenced by a host of factors that can amplify their effect. One of which is CO2 levels in the atmosphere.
As the MPT occurred during a period when there were no apparent changes in the nature of the orbit cycles, scientists have long been attempting to discover what drove the changes to take place.
For this research, Dr Kender and his team drilled for deep-sea sediment in the Bering Sea, in conjunction with the International Ocean Discovery Program, and measured the chemistry of the fossil shells and sediments.
The team were able to create a detailed reconstruction of oceanic water masses through time – and found that the closure of the Baring Strait caused the subarctic North Pacific became stratified during this period of glaciation.
This stratification, that argue, would have removed CO2 from the atmosphere and caused global cooling.
Dr Kender added: “Today much of the cold water produced by sea ice action flows northward into the Arctic Ocean through the Bering Strait. As glaciers grew and sea levels fell around 1 million years ago, the Bering Strait would have closed, retaining colder water within the Bering Sea. This expanded watermass appears to have stifled the upwelling of deep CO2-rich water and allowed the ocean to sequester more CO2 out of the atmosphere. The associated cooling effect would have changed the sensitivity of Earth to orbital cycles, causing colder and longer glaciations that characterise climate ever since.
“Our findings highlight the importance of understanding present and future changes to the high latitude oceans, as these regions are so important for long term sequestration or release of atmospheric CO2.”
原始論文:Sev Kender, Ana Christina Ravelo, Savannah Worne, George E. A. Swann, Melanie J. Leng, Hirofumi Asahi, Julia Becker, Henrieka Detlef, Ivano W. Aiello, Dyke Andreasen, Ian R. Hall. Closure of the Bering Strait caused Mid-Pleistocene Transition coolingNature Communications, 2018; 9 (1) DOI: 10.1038/s41467-018-07828-0
引用自:University of Exeter. "New light shed on what drove last, long-term global climate shift." 

2018年12月19日 星期三

新的發現將羽毛的起源回推了7000萬年


新的發現將羽毛的起源回推了7000萬年
一組包含布里斯托大學的國際古生物學家團隊,發現翼龍這種會飛行的爬蟲類其實擁有四種羽毛。這些跟恐龍共有的特徵將羽毛的起源回推了7000萬年左右。
研究中道虎溝翼龍的重建圖。在牠的頭頸、身體和翅膀上具有四種不同類型的羽毛,大致上呈薑茶色。圖片來源:Yuan Zhang所繪製的重建圖