流星體撞擊把月球珍貴的水分噴濺到太空
By Elizabeth Zubritsky
NASA和約翰•霍普金斯大學應用物理實驗室(位在馬里蘭州勞雷爾)的科學家發表的研究結果指出,流星體成群撞擊會讓月球稀薄的大氣當中暫時出現水氣。
在這張藝術家繪製的示意圖中,LADEE(左側)偵測到因為流星體撞擊月球而釋放出來的水氣(右側)。
科學家認為月球的水分是個具有潛力的水源,可以讓我們在月球進行長期作業,甚至可以幫助人類探索太空深處,而這項發現讓科學家更加了解月球水分的歷史。模型預測流星體撞擊會把月球的水分以水氣的形式釋放出來,但之前還沒有科學家實際觀測到這種現象。
研究團隊最近從NASA的月球大氣與粉塵環境探測器(LADEE)蒐集到的資料中,發現數十起這類事件。LADEE是一顆環繞月球的探測器,任務目標是要取得詳細資料,分析月球稀薄的大氣層的結構和成分,並且確認粉塵是否可以飄到月球的高空。
研究主要作者Mehdi
Benna說:「大部分的事件我們都可以追溯於已知的流星體帶,但還有個令人十分驚訝的發現:新的證據指出了四個之前沒人發現到的流星體帶。」Benna任職於NASA戈達德太空飛行中心(位在馬里蘭州的綠帶城)與馬里蘭大學巴爾的摩分校。此篇研究刊登於《自然―地球科學》(Nature Geosciences)。
這些新的流星體帶被LADEE觀測到的時間,分別是在2014年的一月九日、四月二日、四月五日和四月九日。
現有證據顯示月球含有水份和另一種更有活性的物質――羥基(hydroxyl,化學式為OH)。但是,關於水的起源、是否廣泛分佈以及可能的含量,都是科學家仍在討論的議題。
「月球的大氣層多數時候含有的H2O或OH都相當稀少。」參與LADEE計畫的科學家Richard Elphic表示。他任職於NASA位在加州矽谷的埃姆斯研究中心。「然而,月球經過流星體帶的時候,會噴出足以讓我們偵測到的水氣。事件結束之後,H2O和OH又會再度消失。」
月球科學家通常把H2O和OH都通稱為「水」。未來的月球計畫或許可以測出月球上的H2O和OH究竟有多少。
LADEE是由NASA位在加州矽谷的埃姆斯研究中心製造並營運,並搭載戈達德太空飛行中心製作,可以偵測水蒸氣的質譜儀。在2013年10月至2014年4月的任務期間,LADEE環繞月球並蒐集了關於月球大氣結構和成分的詳細資訊;精確來說,是測量包裹在月球周圍一層薄薄的氣體,稱為「外氣層」。
在月球極為乾燥的表面下方是一層過渡帶,再下面是含水層,此處的水分子附著在些微的表土和岩石之上(稱作月壤)。要把水分釋放出來,流星體至少要撞到月球表面以下8公分的地方。
研究人員經由測量外氣層的水分,計算出含水層的水含量大約為200到500 ppm,也就是總重量的百分之0.02到0.05。這比地球上最為乾燥的土壤還要乾燥,也跟先前的研究結果一致。如果要從如此乾燥的土壤中榨出16盎司(約453.6公克)的水,需要處理超過一公噸的土壤。
由於月球表面的物質十分鬆散,就連直徑只有5毫米的流星體都可以撞到夠深的地方,把一些水氣釋放出來。每次撞擊都會傳開一陣微小的震波,使附近區域的水分噴濺出來。
當流星體如雨般地落在月球表面,釋放出來的水氣會進入外氣層並擴散開來。其中約有三分之二會逸散至太空,只有將近三分之一會回歸月球表面。
這項發現或許可以解釋為什麼兩極附近的撞擊坑,在照不到光的那一側會有冰塊堆積在「冷阱」(cold trap)。我們所知月球上的水分大多數都位在這些冷阱。此處的溫度極低,使得水和其他揮發性物質在接觸到冷阱表面的時候,便會變成固態而長期留在此處,或許可以達到數十億年之久。流星體撞擊可以讓水分進入或離開冷阱。
研究團隊排除了他們偵測到的水分都是來自於流星體本身的可能性。
「我們確定偵測到的水分中,有一部份必定是來自月球,因為撞擊釋放出來的水分質量比流星體內部的水分還多。」論文第二作者Dana Hurley表示。她是約翰•霍普金斯大學應用物理實驗室的研究員。
太陽風接觸月球表面時發生的化學反應也會產生水分,而分析顯示流星體撞擊把水分釋放出來的速度比這種作用還快。
Benna說:「這些流失的水分可能相當古老,可以追溯至月球形成的時候,或者是在歷史早期沉降下來的。」
NASA正和商業界及其他國家合作,推動可以讓人類持續返回月球的計畫,目標是要拓展人類在宇宙中的足跡,並帶回更多知識與挖掘新的機會。
Meteoroid strikes eject precious water
from Moon
Researchers from NASA and the Johns Hopkins University Applied
Physics Laboratory in Laurel, Maryland, report that streams of meteoroids
striking the Moon infuse the thin lunar atmosphere with a short-lived water
vapor.
The findings will help
scientists understand the history of lunar water — a potential resource
for sustaining long term operations on the Moon and human exploration of deep
space. Models had predicted that meteoroid impacts could release water
from the Moon as a vapor, but scientists hadn’t yet observed the
phenomenon.
Now, the team has found
dozens of these events in data collected by NASA’s Lunar Atmosphere and
Dust Environment Explorer. LADEE was a robotic mission that orbited
the Moon to gather detailed information about the structure and composition of
the thin lunar atmosphere, and determine whether dust is lofted into the lunar
sky.
“We traced most of these
events to known meteoroid streams, but the really surprising part is that we
also found evidence of four meteoroid streams that were previously
undiscovered,” said Mehdi Benna of NASA’s Goddard Space Flight Center in
Greenbelt, Maryland, and the University of Maryland Baltimore County. Benna is
the lead author of the study, published in Nature Geosciences.
The newly identified
meteoroid streams, observed by LADEE, occurred on Jan. 9, April 2, April 5 and
April 9, 2014.
There’s evidence that the
Moon has water (H2O) and hydroxyl (OH), a more reactive relative of
H2O. But debates continue about the origins of the water, whether it
is widely distributed and how much might be present.
“The Moon doesn’t have significant
amounts of H2O or OH in its atmosphere most of the time,” said
Richard Elphic, the LADEE project scientist at NASA’s Ames Research Center in
California’s Silicon Valley. “But when the Moon passed through one of these
meteoroid streams, enough vapor was ejected for us to detect it. And then, when
the event was over, the H2O or OH went away.”
Lunar scientists often use
the term “water” to refer to both H2O and OH. Figuring out how much
H2O and how much OH are present is something future Moon missions
might address.
LADEE, which was built and
managed by NASA’s Ames Research Center in California’s Silicon Valley, detected
the vapor using its Neutral Mass Spectrometer, an instrument built by Goddard.
The mission orbited the Moon from October 2013 to April 2014 and gathered
detailed information about the structure and composition of the lunar
atmosphere, or more correctly, the “exosphere” – a faint envelope of gases
around the Moon.
To release water, the
meteoroids had to penetrate at least 3 inches (8 centimeters) below the
surface. Underneath this bone-dry top layer lies a thin transition layer, then
a hydrated layer, where water molecules likely stick to bits of soil and rock,
called regolith.
From the measurements of
water in the exosphere, the researchers calculated that the hydrated layer has
a water concentration of about 200 to 500 parts per million, or about 0.02 to
0.05 percent by weight. This concentration is much drier than the driest
terrestrial soil, and is consistent with earlier studies. It is so dry that one
would need to process more than a metric ton of regolith in order to collect 16
ounces of water.
Because the material on the
lunar surface is fluffy, even a meteoroid that’s a fraction of an inch (5
millimeters) across can penetrate far enough to release a puff of vapor. With
each impact, a small shock wave fans out and ejects water from the surrounding
area.
When a stream of meteoroids
rains down on the lunar surface, the liberated water will enter the exosphere
and spread through it. About two-thirds of that vapor escapes into space, but
about one-third lands back on the surface of the Moon.
These findings could help
explain the deposits of ice in cold traps in the dark reaches of craters near
the poles. Most of the known water on the Moon is located in cold traps, where
temperatures are so low that water vapor and other volatiles that encounter the
surface will remain stable for a very long time, perhaps up to several billion
years. Meteoroid strikes can transport water both into and out of cold traps.
The team ruled out the
possibility that all of the water detected came from the meteoroids themselves.
“We know that some of the
water must be coming from the Moon, because the mass of water being released is
greater than the water mass within the meteoroids coming in,” said the second
author of the paper, Dana Hurley of the Johns Hopkins University Applied
Physics Laboratory.
The analysis indicates that
meteoroid impacts release water faster than it can be produced from reactions
that occur when the solar wind hits the lunar surface.
“The water being lost is
likely ancient, either dating back to the formation of the Moon or deposited
early in its history,” said Benna.
NASA is leading a sustainable
return to the Moon with commercial and international partners to expand human
presence in space and bring back new knowledge and opportunities.
原始論文:M. Benna, D.
M. Hurley, T. J. Stubbs, P. R. Mahaffy & R. C. Elphic. Lunar soil
hydration constrained by exospheric water liberated by meteoroid impacts. Nature
Geoscience, 2019 DOI: 10.1038/s41561-019-0345-3
引用自:NASA/Goddard Space Flight Center.
"Meteoroid strikes eject precious water from moon."